scholarly journals Splitting Triglycerides with a Counter-Current Liquid–Liquid Spray Column: Modeling, Global Sensitivity Analysis, Parameter Estimation and Optimization

Processes ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 881 ◽  
Author(s):  
Mark Jones ◽  
Hector Forero-Hernandez ◽  
Alexandr Zubov ◽  
Bent Sarup ◽  
Gürkan Sin

In this work we present the model of a counter-current spray column in which a triglyceride (tripalmitic triglyceride) is hydrolyzed by water and leads to fatty acid (palmitic acid) and glycerol. A finite volume model (FVM) of the column was developed to describe the reactive extraction process with a two-phase system and validated with an analytical model from the literature with the given data set encompassing six experimental runs. Global, variance-based (Sobol) sensitivity analysis allowed assessment of the sensitivity of the sweet water glycerol content in respect to liquid density, overall mass-transfer coefficient, reaction rate coefficient and the equilibrium ratio to rank them accordingly. Furthermore, parameter estimation with a differential evolution (DE) algorithm was performed to obtain among others the mass transfer, backmixing and reaction rate coefficients. The model was used to formulate and solve a process design problem regarding economic and sustainable performance. Multi-criteria optimization was applied via DE to minimize total annual cost (TAC) and the Eco99 indicator by varying the steam inlet flow rate and distribution over the two steam inlets as the independent variables. The model and analysis was implemented in Fortran and Python where the Fortran model can also be embedded in a process simulator such as PRO/II or Aspen.

2017 ◽  
Vol 53 (6) ◽  
pp. 1-4
Author(s):  
Georgios G. Pyrialakos ◽  
Nikolaos V. Kantartzis ◽  
Tadao Ohtani ◽  
Yasushi Kanai ◽  
Theodoros D. Tsiboukis

2015 ◽  
Vol 782 ◽  
pp. 260-299 ◽  
Author(s):  
Preyas N. Shah ◽  
Eric S. G. Shaqfeh

Surfaces that include heterogeneous mass transfer at the microscale are ubiquitous in nature and engineering. Many such media are modelled via an effective surface reaction rate or mass transfer coefficient employing the conventional ansatz of kinetically limited transport at the microscale. However, this assumption is not always valid, particularly when there is strong flow. We are interested in modelling reactive and/or porous surfaces that occur in systems where the effective Damköhler number at the microscale can be $O(1)$ and the local Péclet number may be large. In order to expand the range of the effective mass transfer surface coefficient, we study transport from a uniform bath of species in an unbounded shear flow over a flat surface. This surface has a heterogeneous distribution of first-order surface-reactive circular patches (or pores). To understand the physics at the length scale of the patch size, we first analyse the flux to a single reactive patch. We use both analytic and boundary element simulations for this purpose. The shear flow induces a 3-D concentration wake structure downstream of the patch. When two patches are aligned in the shear direction, the wakes interact to reduce the per patch flux compared with the single-patch case. Having determined the length scale of the interaction between two patches, we study the transport to a periodic and disordered distribution of patches again using analytic and boundary integral techniques. We obtain, up to non-dilute patch area fraction, an effective boundary condition for the transport to the patches that depends on the local mass transfer coefficient (or reaction rate) and shear rate. We demonstrate that this boundary condition replaces the details of the heterogeneous surfaces at a wall-normal effective slip distance also determined for non-dilute patch area fractions. The slip distance again depends on the shear rate, and weakly on the reaction rate, and scales with the patch size. These effective boundary conditions can be used directly in large-scale physics simulations as long as the local shear rate, reaction rate and patch area fraction are known.


SPE Journal ◽  
2016 ◽  
Vol 21 (01) ◽  
pp. 280-292 ◽  
Author(s):  
John Lyons ◽  
Hadi Nasrabadi ◽  
Hisham A. Nasr-El-Din

Summary Fracture acidizing is a well-stimulation technique used to improve the productivity of low-permeability reservoirs and to bypass deep formation damage. The reaction of injected acid with the rock matrix forms etched channels through which oil and gas can then flow upon production. The properties of these etched channels depend on the acid-injection rate, temperature, reaction chemistry, mass-transport properties, and formation mineralogy. As the acid enters the formation, it increases in temperature by heat exchange with the formation and the heat generated by acid reaction with the rock. Thus, the reaction rate, viscosity, and mass transfer of acid inside the fracture also increase. In this study, a new thermal-fracture-acidizing model is presented that uses the lattice Boltzmann method to simulate reactive transport. This method incorporates both accurate hydrodynamics and reaction kinetics at the solid/liquid interface. The temperature update is performed by use of a finite-difference technique. Furthermore, heterogeneity in rock properties (e.g., porosity, permeability, and reaction rate) is included. The result is a model that can accurately simulate realistic fracture geometries and rock properties at the pore scale and that can predict the geometry of the fracture after acidizing. Three thermal-fracture-acidizing simulations are presented here, involving injection of 15 and 28 wt% of hydrochloric acid into a calcite fracture. The results clearly show an increase in the overall fracture dissolution because of the addition of temperature effects (increasing the acid-reaction and mass-transfer rates). It has also been found that by introducing mineral heterogeneity, preferential dissolution leads to the creation of uneven etching across the fracture surfaces, indicating channel formation.


Sign in / Sign up

Export Citation Format

Share Document