scholarly journals Marangoni Boundary Layer Flow and Heat Transfer of Graphene–Water Nanofluid with Particle Shape Effects

Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1120
Author(s):  
Umair Rashid ◽  
Dumitru Baleanu ◽  
Haiyi Liang ◽  
Muhammad Abbas ◽  
Azhar Iqbal ◽  
...  

Graphene nanofluids have attracted the attention of many researchers because of a variety of remarkable properties such as extraordinary electronic transport properties, high thermal conductivity, and large specific surface areas. This paper investigates the shape effects of nanoparticles on the Marangoni boundary layer of graphene–water nanofluid flow and heat transfer over a porous medium under the influences of the suction parameter. The graphene–water nanofluid flow was contained with various shapes of nanoparticles, namely sphere, column, platelet, and lamina. The problem is modeled in form of partial differential equations (PDES) with boundary conditions. The governing transport equations are converted into dimensionless form with the help of some suitable nondimensional variables. The solution of the problem was found numerically using the NDSolve technique of Mathematica 10.3 software. In addition, the numerical solutions were also compared with analytical results. The homotopy analysis method (HAM) is used to calculate the analytical results. The results show that lamina-shaped nanoparticles have better performance on temperature distribution while sphere-shaped nanoparticles are more efficient for heat transfer than other shapes of nanoparticles.

2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Umair Rashid ◽  
Thabet Abdeljawad ◽  
Haiyi Liang ◽  
Azhar Iqbal ◽  
Muhammad Abbas ◽  
...  

The focus of the present paper is to analyze the shape effect of gold (Au) nanoparticles on squeezing nanofluid flow and heat transfer between parallel plates. The different shapes of nanoparticles, namely, column, sphere, hexahedron, tetrahedron, and lamina, have been examined using water as base fluid. The governing partial differential equations (PDEs) are transformed into ordinary differential equations (ODEs) by suitable transformations. As a result, nonlinear boundary value ordinary differential equations are tackled analytically using the homotopy analysis method (HAM) and convergence of the series solution is ensured. The effects of various parameters such as solid volume fraction, thermal radiation, Reynolds number, magnetic field, Eckert number, suction parameter, and shape factor on velocity and temperature profiles are plotted in graphical form. For various values of involved parameters, Nusselt number is analyzed in graphical form. The obtained results demonstrate that the rate of heat transfer is maximum for lamina shape nanoparticles and the sphere shape of nanoparticles has performed a considerable role in temperature distribution as compared to other shapes of nanoparticles.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245208
Author(s):  
Umair Rashid ◽  
Azhar Iqbal ◽  
Haiyi Liang ◽  
Waris Khan ◽  
Muhammad Waqar Ashraf

Aim of study The shape effects of nanoparticles are very significant in fluid flow and heat transfer. In this paper, we discuss the effects of nanoparticles shape in nanofluid flow between divergent-convergent channels theoretically. In this present study, various shapes of nanoparticles, namely sphere, column and lamina in zinc oxide-water nanofluid are used. The effect of the magnetic field and joule dissipation are also considered. Research methodology The system of nonlinear partial differential equations (PDEs) is converted into ordinary differential equations (ODES). The analytical solutions are successfully obtained and compared with numerical solutions. The Homotopy perturbation method and NDsolve method are used to compare analytical and numerical results respectively. Conclusion The results show that the lamina shape nanoparticles have higher performance in temperature disturbance and rate of heat transfer as compared to other shapes of nanoparticles.


2018 ◽  
Vol 7 (4.33) ◽  
pp. 17
Author(s):  
Siti Nur Aisyah Azeman ◽  
. .

The dual solutions in the boundary layer flow and heat transfer in the presence of thermal radiation is quantitatively studied. The governing partial differential equations are derived into a system of ordinary differential equations using a similarity transformation, and afterward numerical solution obtained by a shooting technique. Dual solutions execute within a certain range of opposing and assisting flow which related to these numerical solutions. The similarity equations have two branches, upper or lower branch solutions, within a certain range of the mixed convection parameters. Further numerical results exist in our observations which enable to discuss the features of the respective solutions.  


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1430
Author(s):  
Mohammed M. Fayyadh ◽  
Kohilavani Naganthran ◽  
Md Faisal Md Basir ◽  
Ishak Hashim ◽  
Rozaini Roslan

The present theoretical work endeavors to solve the Sutterby nanofluid flow and heat transfer problem over a permeable moving sheet, together with the presence of thermal radiation and magnetohydrodynamics (MHD). The fluid flow and heat transfer features near the stagnation region are considered. A new form of similarity transformations is introduced through scaling group analysis to simplify the governing boundary layer equations, which then eases the computational process in the MATLAB bvp4c function. The variation in the values of the governing parameters yields two different numerical solutions. One of the solutions is stable and physically reliable, while the other solution is unstable and is associated with flow separation. An increased effect of the thermal radiation improves the rate of convective heat transfer past the permeable shrinking sheet.


Sign in / Sign up

Export Citation Format

Share Document