scholarly journals Co-Production of Aromatics in Biomass and Waste Gasification

Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 463
Author(s):  
Carlos Mourao Vilela ◽  
Evert Boymans ◽  
Berend Vreugdenhil

Climate changes will have a huge impact on society, one that cannot be truly predicted. However, what is known is that our dependence on fossil feedstock for energy, fuel and chemical production will need to shift towards more biobased and circular feedstock. This paper describes part of an important technology development that uses biogenic and plastic-containing waste streams for the co-production of aromatics with fuels and/or chemicals. This paper captures the first decade of this technology development from idea towards a large Process Demonstration Unit operated and validated within a large gasification R&D infrastructure. The scale-up was successful, with supporting tools to optimize and identify the limits of the technology. Benzene and toluene are directly removed from the product gas with 97% and 99% efficiency, respectively. The next steps will be to include this development in larger piloting and demonstrations for the co-production of aromatics from biomass gasification (biobased chemicals) or aromatics from plastic-containing waste gasification (circular chemicals).

Author(s):  
Igor A. Podolsky ◽  
Susanna Seppälä ◽  
Thomas S. Lankiewicz ◽  
Jennifer L. Brown ◽  
Candice L. Swift ◽  
...  

Industrial biotechnology has the potential to decrease our reliance on petroleum for fuel and bio-based chemical production and also enable valorization of waste streams. Anaerobic microorganisms thrive in resource-limited environments and offer an array of novel bioactivities in this regard that could revolutionize biomanufacturing. However, they have not been adopted for widespread industrial use owing to their strict growth requirements, limited number of available strains, difficulty in scale-up, and genetic intractability. This review provides an overview of current and future uses for anaerobes in biotechnology and bioprocessing in the postgenomic era. We focus on the recently characterized anaerobic fungi (Neocallimastigomycota) native to the digestive tract of large herbivores, which possess a trove of enzymes, pathways, transporters, and other biomolecules that can be harnessed for numerous biotechnological applications. Resolving current genetic intractability, scale-up, and cultivation challenges will unlock the potential of these lignocellulolytic fungi and other nonmodel micro-organisms to accelerate bio-based production.


Author(s):  
Tim Wendelin ◽  
Ken May ◽  
Randy Gee

Significant progress has been made recently in solar parabolic trough technology development and deployment. Part of this success is due to the changing world energy scenario and the recognition that viable renewable energy technologies can play a role in supplying world energy needs. Part is also due to ongoing collaborative efforts by industry and the Department of Energy’s (DOE) Concentrating Solar Power Program (CSP) to enhance the state of the technology in terms of both cost and performance. Currently, there are two trough concentrator projects which the DOE CSP program is supporting. One company, Solargenix, is developing a design to be used in a 64MW plant outside of Boulder City, Nevada. This design is based on the original LUZ LS-2 trough concentrators employed at the Solar Electric Generating Systems (SEGS) plants in Southern California. Another company, Industrial Solar Technology (IST), is working on a scale-up of their design used historically for process heat applications. Very different from the LS-2 approach, this design is still in the research and development stages. One way in which the DOE CSP parabolic trough program assists industry is by providing optical testing and qualification of their concentrator designs. This paper describes the Video Scanning Hartmann Optical Test System (VSHOT) used to optically test both of these designs. The paper also presents the results of tests performed in the past year and what impact the testing has had on the developmental direction of each design.


2019 ◽  
Author(s):  
Mark Fitzsimmons ◽  
Doug M. Heim ◽  
William Follett ◽  
Stevan Jovanovic ◽  
Makini Byron ◽  
...  

Author(s):  
Madhukar R. Mahishi ◽  
M. S. Sadrameli ◽  
Sanjay Vijayaraghavan ◽  
D. Y. Goswami

Hydrogen yield of conventional biomass gasification is limited by chemical equilibrium constraints. A novel technique that has the potential to enhance the hydrogen yield by integrating the gasification and absorption reactions has been suggested. The method involves gasification of biomass in presence of a CO2 sorbent. Ethanol was used as the model biomass compound and CaO was the representative sorbent. Equilibrium modeling was used to determine the product gas composition and hydrogen yield. The analysis was done using ASPEN PLUS software (version 12.1) and the Gibbs energy minimization approach was followed. The effects of temperature, pressure, steam/ethanol ratio, and CaO/ethanol ratio on product yield were investigated. Three case studies were conducted to understand the effect of sorbent addition on the hydrogen yield. Thermodynamic studies showed that the use of sorbents has the potential to enhance the equilibrium hydrogen yield of conventional gasification by ∼19% and reduce the equilibrium CO2 content of product gas by 50.2%. It was also found that the thermodynamic efficiency of sorbent-enhanced gasification (72.1%) was higher than conventional gasification (62.9%). Sorbent-enhanced gasification is a promising technology with a potential to improve the yield and lower the cost of hydrogen production.


Processes ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 263 ◽  
Author(s):  
Derrick Risner ◽  
Maria L. Marco ◽  
Sara A. Pace ◽  
Edward S. Spang

Pinene is a secondary plant metabolite that has functional properties as a flavor additive as well as potential cognitive health benefits. Although pinene is present in low concentrations in several plants, it is possible to engineer microorganisms to produce pinene. However, feedstock cost is currently limiting the industrial scale-up of microbial pinene production. One potential solution is to leverage waste streams such as whey permeate as an alternative to expensive feedstocks. Whey permeate is a sterile-filtered dairy effluent that contains 4.5% weight/weight lactose, and it must be processed or disposed of due its high biochemical oxygen demand, often at significant cost to the producer. Approximately 180 million m3 of whey is produced annually in the U.S., and only half of this quantity receives additional processing for the recovery of lactose. Given that organisms such as recombinant Escherichia coli grow on untreated whey permeate, there is an opportunity for dairy producers to microbially produce pinene and reduce the biological oxygen demand of whey permeate via microbial lactose consumption. The process would convert a waste stream into a valuable coproduct. This review examines the current approaches for microbial pinene production, and the suitability of whey permeate as a medium for microbial pinene production.


Author(s):  
Akira Sakai ◽  
Hajime Koikegami ◽  
Nobuyuki Miura ◽  
Eiji Ochi

This paper describes the development of glass melter technology, primarily the liquid fed joule-heated ceramic melter process (LFCM) for the vitrificaton of high-level radioactive liquid waste (HLLW) since 1977 in Japan. In 2013 the active test at the vitrification facility (K-facility) in Rokkasho commercial reprocessing plant was successfully completed for the final acceptance test. During this period many activities on LFCM process development have been carried out in the engineering scale or the full-scale inactive cold tests including the radioactive laboratory scale hot tests. In particular, the design of melter bottom structure and the operating method should be optimized in order to avoid the operational problems caused by accumulation of noble metals (Ru, Rh, Pd), electro-conducive deposits on the melter bottom. Through the operation of inactive and active test facilities in Tokai, the design basis for the Tokai Vitrification Facility (TVF) has been provided. The hot operation of the TVF was started in 1995 to demonstrate the LFCM process including the performance of the melter off-gas clean-up system etc. The TVF has provided the basis of the process design and the operation method for the K-facility melter in Rokkasho. In case of commercial scale vitrification, the glass production rate of the melter should be several times larger than that of the TVF. The K-facility full-scale inactive mock-up melter (KMOC) has been planned to confirm the influence of scale-up factors and the difference between Tokai and Rokkasho wastes. Through the testing operation of the KMOC, which was initially started in 2000, it has been found that the stable formation of a cold cap on a molten glass surface is fundamentally important to avoid the excessive precipitation of noble metals and the yellow phase formation. The active test of the K-facility has been proceeding under the same conditions as the KMOC, and was successfully completed in May, 2013. The advanced glass melter development programs have also commenced from 2009 to ensure a more robust and noble metals are compatible with the LFCM system and also to provide a higher processing rate. The second K-facility full-scale inactive mock-up melter (K2MOC) has been installed in the vitrification technology development facility (X-14) at Rokkasho. Its testing operation has commenced from November, 2013.


2018 ◽  
Vol 32 (2) ◽  
pp. 1703-1710 ◽  
Author(s):  
Jun-fei Jiang ◽  
Lin Lang ◽  
Le-teng Lin ◽  
Hua-cai Liu ◽  
Xiu-li Yin ◽  
...  

2015 ◽  
Author(s):  
Roberto José Páez Salgado ◽  
Luisa Fernanda Marzola Atencia ◽  
Jorge Mario Mendoza Fandiño ◽  
Adrián Enrique Ávila Gómez ◽  
Juan Fernando Arango Meneses

This research is based on obtaining a mathematical model to determine the efficiency of generating a generator coupled to a biomass gasification process. To do this, it is initially simulated internal combustion engine at the Aspen hysys® licensed software, in order to obtain the shaft work and a representative model of the generation efficiency of the motor; according to the characteristics of the power cycle and product gas from the gasification of agricultural biomass prevailing in the Department of Córdoba – Colombia: Cotton waste (Gossypium hirsutum), Rice husk (Oryza sativa), Sesame stalk (Sesamum indicum), Corn cob (Zea mays) and Coconut fiber (Cocos nucifera). Subsequently, the generator efficiency is evaluated by the electric power generation simulation phase in the Simulink Toolbox of the MATLAB® software. The deterministic mathematical models resulting from the simulations above are adjusted by statistical techniques to experimental data and a regression model that assesses the overall system efficiency is obtained. Such efficiencies range from 16 to 20%. Therefore it is concluded that the use of representative crops biomass product’s calorific values in the Department of Córdoba -Colombia, are profitable for electric power generation. On the other hand, it is important to note that experimental data’s reliable and monitored way acquisition was performed through the SCADA developing; it allowed real time process variables’ intervention presentation.


Sign in / Sign up

Export Citation Format

Share Document