scholarly journals Studying Land Use and Land Cover Spatial Patterns Distribution in Crete, Greece with Means of Satellite Remote Sensing

Proceedings ◽  
2020 ◽  
Vol 30 (1) ◽  
pp. 66
Author(s):  
Dimitrios D. Alexakis ◽  
Christos Polykretis

Multi-temporal Land use and Land cover (LULC) monitoring is a crucial parameter for assessing an area’s landscape ecology regime. LULC changes can be effectively used to describe dynamics of both urban or rural environments and vegetation patterns as an important indicator of ecological environments. In this context, spatial land use properties can be quantified by using a set of landscape metrics. Landscape metrics capture inherent spatial structure of the environment and are used to enhance interpretation of spatial pattern of the landscape. This study aims to monitor diachronically the LULC regime of the island of Crete, Greece with the use of Landsat satellite imageries (Landsat 5, Landsat-7 and Landsat-8) in terms of soil erosion. For this reason, radiometric and atmospheric corrections are applied to all satellite products and unsupervised classification algorithms are used to develop detail LULC maps of the island. The LULC classes are developed by generalizing basic CORINE classes. Following, various landscape metrics are applied to estimate the temporal changes in LULC patterns of the island. The results denote that the diachronic research of spatial patterns evolution can effectively assist to the investigation of the structure, function and landscape pattern changes.

2018 ◽  
Vol 7 (2.17) ◽  
pp. 101
Author(s):  
K V. Ramana Rao ◽  
Prof P. Rajesh Kumar

Land use and land cover information of an area has got importance in various aspects mainly because of various development activities that are taking place in every part of the world. Various satellite sensors are providing the required data collected by remote sensing techniques in the form of images using which the land use land cover information can be analyzed.  Constistency of Landsat satellite is illustrated with two time periods such as Operational Land Imager (OLI) of 2013 and consecutive 2014 procured by earth explorer with quantified changes for the same period in visakhapatnam of hudhud cyclone. Since this city is consisting of mainly urban, vegetation, few water bodies, some area of agriculture and barren,five classes have been chosen from the study area. The results indicate that due to the hudhud event some changes took place.  vegetation and built-up land have been increased by An increase of 19.1% (6.3 km2) and 11% (5.36 km2) has been observed in the case of vegetation and built up area  where as a decrease of 1.2% (4.06 km2), 6.1% (1.70 km2) and 1.2% (0.72 km2) has been observed in the case of  agriculture, barren land, and water body respectively. With the help of available satellite imagery belonging to the same area and of different time periods along with the  change detection techniques landscape dynamics have been analyzed. Using various classification algorithms along with the data available from the satellite sensor the land use and land cover classification information of the study area has been obtained. The maximum likelihood algorithm provided better results compared to other classification techniques and the accuracy achieved with this algorithm is 99.930% (overall accuracy) and 0.999 (Kappa coefficient).  


2021 ◽  
Vol 9 (1) ◽  
pp. 15-27
Author(s):  
Saleha Jamal ◽  
Md Ashif Ali

Wetlands are often called as biological “supermarket” and “kidneys of the landscape” due to their multiple functions, including water purification, water storage, processing of carbon and other nutrients, stabilization of shorelines and support of aquatic lives. Unfortunately, although being dynamic and productive ecosystem, these wetlands have been affected by human induced land use changes. India is losing wetlands at the rate of 2 to 3 per cent each year due to over-population, direct deforestation, urban encroachment, over fishing, irrigation and agriculture etc (Prasher, 2018). The present study tries to investigate the nature and degree of land use/land cover transformation, their causes and resultant effects on Chatra Wetland. To fulfil the purpose of the study, GIS and remote sensing techniques have been employed. Satellite imageries have been used from United States Geological Survey (USGS) Landsat 7 Enhanced Thematic Mapper plus and Landsat 8 Operational Land Imager for the year 2003 and 2018. Cloud free imageries of 2003 and 2018 have been downloaded from USGS (https://glovis.usgs.gov/) for the month of March and April respectively. Image processing, supervised classificationhas been done in ArcGis 10.5 and ERDAS IMAGINE 14. The study reveals that the settlement hasincreased by about 90.43 per cent in the last 15 years around the Chatra wetland within the bufferzone of 2 Sq km. Similarly agriculture, vegetation, water body, swamp and wasteland witnessed asignificant decrease by 5.94 per cent, 57.69 per cent, 26.64 per cent 4.52 per cent and 55.27 per centrespectively from 2003 to 2018.


2021 ◽  
Vol 83 (2) ◽  
pp. 7-31
Author(s):  
Josip Šetka ◽  
◽  
Petra Radeljak Kaufmann ◽  
Luka Valožić ◽  
◽  
...  

Changes in land use and land cover are the result of complex interactions between humans and their environment. This study examines land use and land cover changes in the Lower Neretva Region between 1990 and 2020. Political and economic changes in the early 1990s resulted in changes in the landscape, both directly and indirectly. Multispectral image processing was used to create thematic maps of land use and land cover for 1990, 2005, and 2020. Satellite images from Landsat 5, Landsat 7 and Landsat 8 were the main source of data. Land use and land cover structure was assessed using a hybrid approach, combining unsupervised and manual (visual) classification methods. An assessment of classification accuracy was carried out using a confusion matrix and kappa coefficient. According to the results of the study, the percentage of built-up areas increased by almost 33%. Agricultural land and forests and grasslands also increased, while the proportion of swamps and sparse vegetation areas decreased.


2021 ◽  
Vol 889 (1) ◽  
pp. 012046
Author(s):  
Ashangbam Inaoba Singh ◽  
Kanwarpreet Singh

Abstract Rapid urbanization has dramatically altered land use and land cover (LULC). The focus of this research is on the examination of the last two decades. The research was conducted in the Chandel district of Manipur, India. The LULC of Chandel (encompassing a 3313 km2 geographical area) was mapped using remotely sensed images from LANDSAT4-5, LANDSAT 7 ETM+, and LANDSAT 8 (OLI) to focus on spatial and temporal trends between years 2000 and 2021. The LULC maps with six major classifications viz., Thickly Vegetated Area (TVA), Sparsely Vegetated Area (SVA), Agriculture Area (AA), Population Area (PA), Water Bodies (WB), and Barren Area (BA) of the were generated using supervised classification approach. For the image classification procedure, interactive supervised classification is adopted to calculate the area percentage. The results interpreted that the TVA covers approximately 65% of the total mapped area in year 2002, which has been decreased up to 60% in 2007, 56% in 2011, 55 % in 2017, and 52% in 2021. The populated area also increases significantly in these two decades. The change and increase in the PA has been observed from year 2000 (8%) to 2021 (11%). Water Bodies remain same throughout the study period. Deforestation occurs as a result of the rapid rise of the population and the extension of the territory.


Land use Land cover classification is an important aspect for managing natural resources and monitoring environmental changes. Urban expansion becomes one of the major challenges for the administrator. The LANDSAT 8 images are processed using the open source GRASS (Geographic Resource Analysis Support System). Unsupervised classification technique based on Ant Colony Optimization (ACO) algorithm has been modified and proposed as Modified Ant Colony Optimization (MACO) for LULC classification. In order to improve the classification accuracy of the proposed algorithm, we have combined spatial, spectral and texture features to extract more information of homogeneous land surface. The classification accuracy of the proposed algorithm has been compared with other unsupervised classification methods such as k-means, ISODATA and ACO algorithms. The overall classification accuracy of proposed unsupervised MACO algorithm has been increased by 11.24 %, 8.24% for open space and water bodies class, respectively as compared to ACO algorithm.


2021 ◽  
Vol 4 (3) ◽  
pp. 132-146
Author(s):  
Md. Lutfor Rahman ◽  
Syed Hafizur Rahman

This study aims at classifying land use land cover (LULC) patterns and detect changes in a 'secondary city' (Savar Upazila) in Bangladesh for 30 years i.e., from 1990 to 2020. Two distinct sets of Landsat satellite imagery, such as Landsat Thematic Mapper (TM) 1990 and Landsat 7 ETM+ 2020, were collected from the United States Geological Survey (USGS) website. Using ArcMap 10.3, the maximum likelihood algorithm was used to perform a supervised classification methodology. The error matrix and Kappa Kat were done to measure the mapping accuracy. Both images were classified into six separate classes: Cropland, Barren land, Built-up area, Vegetation, Waterbody, and Wetlands. From 1990 to 2020, Cropland, Barren land, Waterbody, and Wetlands have been decreased by 30.63%, 11.26%, 23.54%, and 21.89%, respectively. At the same time, the Built-up area and Vegetation have been increased by 161.16% and 5.77%, respectively. The research revealed that unplanned urbanization had been practiced in the secondary city indicated by the decreases in Cropland, Barren land, Wetland, and Waterbody, which also showed direct threats to food security and freshwater scarcity. An increase in Vegetation (mostly homestead vegetation) indicates some environment awareness programs that encourage people to maintain homestead and artificial gardens. The study argues for the sustainable planning of a secondary city for a developing country's future development.


2015 ◽  
Vol 6 (2) ◽  
Author(s):  
Yulius Yulius ◽  
T A Tanto ◽  
M Ramdhan ◽  
A Putra ◽  
H L Salim

ABSTRACT Bungus district of Kabung Bay is a growing region located at coastal zone of southern city of Padang, west sumatra. As a growing region, the Bungus district brings some impacts on population increase and degradation of environment quality. Therefore, it is needed an effort to identify land use changes and the distribution of land use in this region from the year of 2003 until 2013. This research used landsat 7 imagery in 2003 and landsat 8 imagery in 2013. The data were analysed descriptively using geographical informastion system. The result showd that (1) swamp land cover experienced the smallest land use change between 2003 until 2013 (0.02 ha/yr), meanwhile forest land use had the biggest change of about 224.8 ha/yr. The biggest addition of land cover belong to settlement area about 47.59 hectare, and the other hand occur on bush about -31.68 hectare. Keywords: Bungus district, landcover changes, Landsat imagery, GIS


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Jane Ferah Gondwe ◽  
Sun Li ◽  
Rodger Millar Munthali

Blantyre City has experienced a wide range of changes in land use and land cover (LULC). This study used Remote Sensing (RS) to detect and quantify LULC changes that occurred in the city throughout a twenty-year study period, using Landsat 7 Enhanced Thematic Mapper (ETM+) images from 1999 and 2010 and Landsat 8 Operational Land Imager (OLI) images from 2019. A supervised classification method using an Artificial Neural Network (ANN) was used to classify and map LULC types. The kappa coefficient and the overall accuracy were used to ascertain the classification accuracy. Using the classified images, a postclassification comparison approach was used to detect LULC changes between 1999 and 2019. The study revealed that built-up land and agricultural land increased in their respective areas by 28.54 km2 (194.81%) and 35.80 km2 (27.16%) with corresponding annual change rates of 1.43 km·year−1 and 1.79 km·year−1. The area of bare land, forest land, herbaceous land, and waterbody, respectively, decreased by 0.05%, 90.52%, 71.67%, and 6.90%. The LULC changes in the study area were attributed to urbanization, population growth, social-economic growth, and climate change. The findings of this study provide information on the changes in LULC and driving factors, which Blantyre City authorities can utilize to develop sustainable development plans.


2021 ◽  
Vol 234 ◽  
pp. 00080
Author(s):  
Meysara Elmalki ◽  
Fouad Mounir ◽  
Abdellah Ichen ◽  
Thami Khai ◽  
Mohammed Aarab

The Ourika watershed, located in the North-West of Moroccan High Atlas, has undergone several spatio-temporal changes and accelerated land use dynamics as a result of the interaction of climatic, topographic and anthropogenic factors. The objective of this study is to monitor the evolution of land use in the study area over the past 33 years. Landsat satellite imagery has been chosen for land cover mapping, providing a sufficient detail to identify land cover characteristics while providing more or less complete coverage of the area of action. Landsat 5 Thematic Mapper satellite images from 1987 and Landsat 8 Operational Land Imager from 2019 were used, with a spatial resolution of 30m. The images were treated and classified using Support Vector Machine algorithm (SVM) implemented on QGIS Geographic Information System software. The classification evaluation shows a Kappa coefficient of 85% and 84% and an overall accuracy of 95% and 94% for 1987 and 2019 respectively. Furthermore, the results showed a 10% decrease in the forest as well as a significant increase in the pasture, arboriculture, bare land and buildings with a respective percentage of 5.99%, 1.67%, 1.48% and 1.37% accordingly.


2021 ◽  
Vol 8 (2) ◽  
pp. 49-56
Author(s):  
Vajahat Khursheed ◽  
Mohammad Taufique

Horticulture industry is backbone of the economy of the Jammu and Kashmir, it has increased spontaneously from a recent couple of decades and had immensely impacted the socio-economic conditions of the inhabitants of the Rambiara Catchment. The study aimed to identify the varied land use and land cover categories prevailing over the Rambiara catchment and attempted to study the temporal changes. Multispectral images of the Landsat 7 and Landsat 8 were brought into use by making the LULC classes through the maximum supervised classification for the images of year 1999 and year 2019. Whole the study area was classified into eight major land cover categories i.e., Horticulture, Settlement, Water, Riverbed, Dense Forests, Sparce Forests and Waste Lands. The results obtained depicted that there was a large-scale positive change observed by the land cover categories of Horticulture +172.67 percent, Settlement +112.06 percent and sparse forest by +28.44 percent. The horticulture remained the highest achiever over the last 20 years and this is because of the high cash value realized from fruits, less agricultural production obtained from crops other than fruits and also due to changing climatic.


Sign in / Sign up

Export Citation Format

Share Document