scholarly journals A Machine Learning Approach for DDoS (Distributed Denial of Service) Attack Detection Using Multiple Linear Regression

Proceedings ◽  
2020 ◽  
Vol 63 (1) ◽  
pp. 51
Author(s):  
Swathi Sambangi ◽  
Lakshmeeswari Gondi

The problem of identifying Distributed Denial of Service (DDos) attacks is fundamentally a classification problem in machine learning. In relevance to Cloud Computing, the task of identification of DDoS attacks is a significantly challenging problem because of computational complexity that has to be addressed. Fundamentally, a Denial of Service (DoS) attack is an intentional attack attempted by attackers from single source which has an implicit intention of making an application unavailable to the target stakeholder. For this to be achieved, attackers usually stagger the network bandwidth, halting system resources, thus causing denial of access for legitimate users. Contrary to DoS attacks, in DDoS attacks, the attacker makes use of multiple sources to initiate an attack. DDoS attacks are most common at network, transportation, presentation and application layers of a seven-layer OSI model. In this paper, the research objective is to study the problem of DDoS attack detection in a Cloud environment by considering the most popular CICIDS 2017 benchmark dataset and applying multiple regression analysis for building a machine learning model to predict DDoS and Bot attacks through considering a Friday afternoon traffic logfile.

2020 ◽  
Vol 17 (8) ◽  
pp. 3765-3769
Author(s):  
N. P. Ponnuviji ◽  
M. Vigilson Prem

Cloud Computing has revolutionized the Information Technology by allowing the users to use variety number of resources in different applications in a less expensive manner. The resources are allocated to access by providing scalability flexible on-demand access in a virtual manner, reduced maintenance with less infrastructure cost. The majority of resources are handled and managed by the organizations over the internet by using different standards and formats of the networking protocols. Various research and statistics have proved that the available and existing technologies are prone to threats and vulnerabilities in the protocols legacy in the form of bugs that pave way for intrusion in different ways by the attackers. The most common among attacks is the Distributed Denial of Service (DDoS) attack. This attack targets the cloud’s performance and cause serious damage to the entire cloud computing environment. In the DDoS attack scenario, the compromised computers are targeted. The attacks are done by transmitting a large number of packets injected with known and unknown bugs to a server. A huge portion of the network bandwidth of the users’ cloud infrastructure is affected by consuming enormous time of their servers. In this paper, we have proposed a DDoS Attack detection scheme based on Random Forest algorithm to mitigate the DDoS threat. This algorithm is used along with the signature detection techniques and generates a decision tree. This helps in the detection of signature attacks for the DDoS flooding attacks. We have also used other machine learning algorithms and analyzed based on the yielded results.


2019 ◽  
Vol 20 (2) ◽  
pp. 285-298 ◽  
Author(s):  
A. Dhanapal ◽  
P. Nithyanandam

Cloud computing became popular due to nature as it provides the flexibility to add or remove the resources on-demand basis. This also reduces the cost of investments for the enterprises significantly. The adoption of cloud computing is very high for enterprises running their online applications. The availability of online services is critical for businesses like financial services, e-commerce applications, etc. Though cloud provides availability, still these applications are having potential threats of going down due to the slow HTTP Distributed Denial of Service (DDoS) attack in the cloud. The slow HTTP attacks intention is to consume all the available server resources and make it unavailable to the real users. The slow HTTP DDoS attack comes with different formats such as slow HTTP headers attacks, slow HTTP body attacks and slow HTTP read attacks. Detecting the slow HTTP DDoS attacks in the cloud is very crucial to safeguard online cloud applications. This is a very interesting and challenging topic in DDoS as it mimics the slow network. This paper proposed a novel method to detect slow HTTP DDoS attacks in the cloud. The solution is implemented using the OpenStack cloud platform. The experiments conducted exhibits the accurate results on detecting the attacks at the early stages. The slowHTTPTest open source tool is used in this experiment to originate slow HTTP DDoS attacks.


2021 ◽  
Vol 13 (19) ◽  
pp. 10743
Author(s):  
Mazhar Javed Awan ◽  
Umar Farooq ◽  
Hafiz Muhammad Aqeel Babar ◽  
Awais Yasin ◽  
Haitham Nobanee ◽  
...  

Currently, the Distributed Denial of Service (DDoS) attack has become rampant, and shows up in various shapes and patterns, therefore it is not easy to detect and solve with previous solutions. Classification algorithms have been used in many studies and have aimed to detect and solve the DDoS attack. DDoS attacks are performed easily by using the weaknesses of networks and by generating requests for services for software. Real-time detection of DDoS attacks is difficult to detect and mitigate, but this solution holds significant value as these attacks can cause big issues. This paper addresses the prediction of application layer DDoS attacks in real-time with different machine learning models. We applied the two machine learning approaches Random Forest (RF) and Multi-Layer Perceptron (MLP) through the Scikit ML library and big data framework Spark ML library for the detection of Denial of Service (DoS) attacks. In addition to the detection of DoS attacks, we optimized the performance of the models by minimizing the prediction time as compared with other existing approaches using big data framework (Spark ML). We achieved a mean accuracy of 99.5% of the models both with and without big data approaches. However, in training and testing time, the big data approach outperforms the non-big data approach due to that the Spark computations in memory are in a distributed manner. The minimum average training and testing time in minutes was 14.08 and 0.04, respectively. Using a big data tool (Apache Spark), the maximum intermediate training and testing time in minutes was 34.11 and 0.46, respectively, using a non-big data approach. We also achieved these results using the big data approach. We can detect an attack in real-time in few milliseconds.


2019 ◽  
Vol 8 (1) ◽  
pp. 486-495 ◽  
Author(s):  
Bimal Kumar Mishra ◽  
Ajit Kumar Keshri ◽  
Dheeresh Kumar Mallick ◽  
Binay Kumar Mishra

Abstract Internet of Things (IoT) opens up the possibility of agglomerations of different types of devices, Internet and human elements to provide extreme interconnectivity among them towards achieving a completely connected world of things. The mainstream adaptation of IoT technology and its widespread use has also opened up a whole new platform for cyber perpetrators mostly used for distributed denial of service (DDoS) attacks. In this paper, under the influence of internal and external nodes, a two - fold epidemic model is developed where attack on IoT devices is first achieved and then IoT based distributed attack of malicious objects on targeted resources in a network has been established. This model is mainly based on Mirai botnet made of IoT devices which came into the limelight with three major DDoS attacks in 2016. The model is analyzed at equilibrium points to find the conditions for their local and global stability. Impact of external nodes on the over-all model is critically analyzed. Numerical simulations are performed to validate the vitality of the model developed.


Sign in / Sign up

Export Citation Format

Share Document