scholarly journals A Sub-Zonal PMV-Based HVAC and Façade Control System for Curtain Wall Buildings

Proceedings ◽  
2018 ◽  
Vol 2 (15) ◽  
pp. 1138 ◽  
Author(s):  
Marco Arnesano ◽  
Andrea Calvaresi ◽  
Filippo Pietroni ◽  
Lorenzo Zampetti ◽  
Sara Magnani ◽  
...  

This paper presents an experimental test room in a curtain wall building where an innovative monitoring and control system was implemented and tested. The proposed solution is composed by an IR-based comfort sensor that measures the PMV (Predicted Mean Vote) index for 2 room’s sub-zones and provides the optimal air temperature set-points. The overall control system includes a distributed sensors and actuators network, also embedded into the façade modules, to measure indoor and outdoor parameters and to regulate fan-coils, windows opening and shadings with a sub-zonal approach. Initial results turn out to provide an energy saving of about 20% with an improvement of thermal/visual comfort and IAQ conditions.

Proceedings ◽  
2018 ◽  
Vol 2 (15) ◽  
pp. 1596
Author(s):  
Marco Arnesano ◽  
Andrea Calvaresi ◽  
Filippo Pietroni ◽  
Lorenzo Zampetti ◽  
Sara Magnani ◽  
...  

This paper presents an experimental test room in a curtain wall building where an innovative monitoring and control system was implemented and tested. The proposed solution is composed by an IR-based comfort sensor that measures the PMV (Predicted Mean Vote) index for 2 room’s sub-zones and provides the optimal air temperature set-points. The overall control system includes a distributed sensors and actuators network, also embedded into the façade modules, to measure indoor and outdoor parameters and to regulate fan-coils, windows opening and shadings with a sub-zonal approach. Initial results turn out to provide an energy saving of about 20% with an improvement of thermal/visual comfort and IAQ conditions.


Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3643 ◽  
Author(s):  
Abba ◽  
Namkusong ◽  
Lee ◽  
Crespo

Irrigation systems are becoming increasingly important, owing to the increase in human population, global warming, and food demand. This study aims to design a low-cost autonomous sensor interface to automate the monitoring and control of irrigation systems in remote locations, and to optimize water use for irrigation farming. An internet of things-based irrigation monitoring and control system, employing sensors and actuators, is designed to facilitate the autonomous supply of adequate water from a reservoir to domestic crops in a smart irrigation systems. System development lifecycle and waterfall model design methodologies have been employed in the development paradigm. The Proteus 8.5 design suite, Arduino integrated design environment, and embedded C programming language are commonly used to develop and implement a real working prototype. A pumping mechanism has been used to supply the water required by the soil. The prototype provides power supply, sensing, monitoring and control, and internet connectivity capabilities. Experimental and simulation results demonstrate the flexibility and practical applicability of the proposed system, and are of paramount importance, not only to farmers, but also for the expansion of economic activity. Furthermore, this system reduces the high level of supervision required to supply irrigation water, enabling remote monitoring and control.


2019 ◽  
pp. 41-48
Author(s):  
Yan Guojun ◽  
Oleksiy Kozlov ◽  
Oleksandr Gerasin ◽  
Galyna Kondratenko

The article renders the special features of the design of a tracked mobile robot (MR) for moving over inclined ferromagnetic surfaces while performing specified technological operations. There is conducted a synthesis of the functional structure and selective technological parameters (such as control coordinates) of the computerized monitoring and control system (CMCS) intended for use with this MR. Application of the CMCS with the proposed functional structure allows substantially increasing the accuracy of the MR monitoring and control, which in turn provides for a considerable enhancement in the quality and economic efficiency of the operations on processing of large ferromagnetic surfaces.


Sign in / Sign up

Export Citation Format

Share Document