fort drum
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 5)

H-INDEX

4
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Sean Wallace ◽  
Scott Lux ◽  
Constandinos Mitsingas ◽  
Irene Andsager ◽  
Tapan Patel

This work performed measurement and verification of installed, operational solar wall systems at Fort Drum, NY, and Forbes Field, Air National Guard, Topeka, KS. Actual annual savings were compared estimated savings generated by a solar wall modeling tool (RETScreen). A comparison with the RETScreen modeling tool shows that the measured actively heated air provided by the solar wall provides 57% more heat than the RETScreen tool predicted, after accounting for boiler efficiency. The solar wall at Fort Drum yields a net savings of $851/yr, for a simple payback of 146 years and a SIR of 0.16. RETScreen models indicate that the solar wall system at Forbes Field, Kansas Air National Guard, Topeka, KS saves $9,350/yr, for a simple payback of 58.8 years and a SIR of 0.34. Although results showed that, due to low natural gas prices, the Fort Drum system was not economically viable, it was recommended that the system still be used to meet renewable energy and fossil fuel reduction goals. The current system becomes economical (SIR 1.00) at a natural gas rate of $16.00/MMBTU or $1.60 /therm.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Richard H. Odom ◽  
W. Mark Ford

Simulating long-term, landscape level changes in forest composition requires estimates of stand age to initialize succession models. Detailed stand ages are rarely available, and even general information on stand history often is lacking. We used data from USDA Forest Service Forest Inventory and Analysis (FIA) database to estimate broad age classes for a forested landscape to simulate changes in landscape composition and structure relative to climate change at Fort Drum, a 43,000 ha U.S. Army installation in northwestern New York. Using simple linear regression, we developed relationships between tree diameter and age for FIA site trees from the host and adjacent ecoregions and applied those relationships to forest stands at Fort Drum. We observed that approximately half of the variation in age was explained by diameter breast height (DBH) across all species studied (r2 = 0.42 for sugar maple Acer saccharum to 0.63 for white ash Fraxinus americana). We then used age-diameter relationships from published research on northern hardwood species to calibrate results from the FIA-based analysis. With predicted stand age, we used tree species life histories and environmental conditions represented by ecological site types to parameterize a stochastic forest landscape model (LANDIS-II) to spatially and temporally model successional changes in forest communities at Fort Drum. Forest stands modeled over 100 years without significant disturbance appeared to reflect expected patterns of increasing dominance by shade-tolerant mesophytic tree species such as sugar maple, red maple (Acer rubrum), and eastern hemlock (Tsuga canadensis) where soil moisture was sufficient. On drier sandy soils, eastern white pine (Pinus strobus), red pine (P. resinosa), northern red oak (Quercus rubra), and white oak (Q. alba) continued to be important components throughout the modeling period with no net loss at the landscape scale. Our results suggest that despite abundant precipitation and relatively low evapotranspiration rates for the region, low soil water holding capacity and fertility may be limiting factors for the spread of mesophytic species on excessively drained soils in the region. Increasing atmospheric temperatures projected for the region could alter moisture regimes for many coarse-textured soils providing a possible mechanism for expansion of xerophytic tree species.


2019 ◽  
Vol 10 (2) ◽  
pp. 346-361 ◽  
Author(s):  
Tomás Nocera ◽  
W. Mark Ford ◽  
Alexander Silvis ◽  
Christopher A. Dobony

Abstract With the declines in abundance and changing distribution of white-nose syndrome–affected bat species, increased reliance on acoustic monitoring is now the new “normal.” As such, the ability to accurately identify individual bat species with acoustic identification programs has become increasingly important. We assessed rates of disagreement between the three U.S. Fish and Wildlife Service–approved acoustic identification software programs (Kaleidoscope Pro 4.2.0, Echoclass 3.1, and Bat Call Identification 2.7d) and manual visual identification using acoustic data collected during summers from 2003 to 2017 at Fort Drum, New York. We assessed the percentage of agreement between programs through pairwise comparisons on a total nightly count level, individual file level (e.g., individual echolocation pass call file), and grouped maximum likelihood estimate level (e.g., probability values that a species is misclassified as present when in fact it is absent) using preplanned contrasts, Akaike Information Criterion, and annual confusion matrices. Interprogram agreement on an individual file level was low, as measured by Cohen's Kappa (0.2–0.6). However, site-night level pairwise comparative analysis indicated that program agreement was higher (40–90%) using single season occupancy metrics. In comparing analytical outcomes of our different datasets (i.e., how comparable programs and visual identification are regarding the relationship between environmental conditions and bat activity), we determined high levels of congruency in the relative rankings of the model as well as the relative level of support for each individual model. This indicated that among individual software packages, when analyzing bat calls, there was consistent ecological inference beyond the file-by-file level at the scales used by managers. Depending on objectives, we believe our results can help users choose automated software and maximum likelihood estimate thresholds more appropriate for their needs and allow for better cross-comparison of studies using different automated acoustic software.


2019 ◽  
Vol 18 ◽  
pp. e00633 ◽  
Author(s):  
Tomás Nocera ◽  
W. Mark Ford ◽  
Alexander Silvis ◽  
Christopher A. Dobony
Keyword(s):  
New York ◽  

2018 ◽  
Author(s):  
Orange Marshall ◽  
Sean Morefield ◽  
Brendan Danielson ◽  
Steven Mori ◽  
Eric Brockmire

2015 ◽  
Vol 143 (9) ◽  
pp. 3591-3609 ◽  
Author(s):  
Peter G. Veals ◽  
W. James Steenburgh

Abstract Lake-effect snowstorms east of Lake Ontario are frequently intense and contribute to substantial seasonal accumulations, especially over the Tug Hill Plateau (hereafter Tug Hill), which rises at a gentle 1.25% slope to ~500 m above lake level. Using a variety of datasets including radar imagery from the KTYX (Fort Drum, New York) WSR-88D, this paper examines the characteristics of lake-effect precipitation east of Lake Ontario over 13 cool seasons (16 September 2001–15 May 2014). During this period, days with at least 2 h of lake effect account for 61%–76% of the mean cool-season snowfall and 24%–37% of the mean cool-season liquid precipitation. Mean monthly lake-effect frequency and snowfall peak in December and January. The highest lake-effect frequency and snowfall occur over the western and upper Tug Hill, with an arm of relatively high lake-effect frequency and snowfall extending to the southeast shore of Lake Ontario. To the east (lee), lake-effect frequency and snowfall decrease abruptly over the Black River valley, although relatively high frequency and snowfall extend downstream into the western Adirondack Mountains. Broad coverage and long-lake-axis-parallel (LLAP) bands dominate the lake-effect morphology throughout the region. There is no diurnal modulation of lake-effect frequency during winter, but weak modulation in fall and spring, especially of LLAP bands. Collectively, these results quantify the role that lake effect plays in the cool-season hydroclimate east of Lake Ontario. The increase in lake-effect frequency and snowfall over Tug Hill suggest an inland/orographic intensification of many lake-effect systems, with evidence for shadowing in the lee.


2014 ◽  
Vol 5 (2) ◽  
pp. 217-226 ◽  
Author(s):  
Laci S. Coleman ◽  
W. Mark Ford ◽  
Chris A. Dobony ◽  
Eric R. Britzke

Abstract In the summers of 2011 and 2012, we compared passive and active acoustic sampling for bats at 31 sites at Fort Drum Military Installation, New York. We defined active sampling as acoustic sampling that occurred in 30-min intervals between the hours of sunset and 0200 with a user present to manipulate the directionality of the microphone. We defined passive sampling as acoustic sampling that occurred over a 12-h period (1900–0700 hours) without a user present and with the microphone set in a predetermined direction. We detected seven of the nine possible species at Fort Drum, including the federally endangered Indiana bat Myotis sodalis, the proposed-for-listing northern bat M. septentrionalis, the little brown bat M. lucifugus, and the big brown bat Eptesicus fuscus, which are impacted by white-nose syndrome (WNS); and the eastern red bat Lasiurus borealis, the hoary bat L. cinereus, and the silver-haired bat Lasionycteris noctivagans, which are not known to be impacted by WNS. We did not detect two additional WNS-impacted species known to historically occur in the area: the eastern small-footed bat Myotis leibii and the tri-colored bat Perimyotis subflavus. Single-season occupancy models revealed lower detection probabilities of all detected species using active sampling versus passive sampling. Additionally, overall detection probabilities declined in detected WNS-impacted species between years. A paired t-test of simultaneous sampling on 21 occasions revealed that overall recorded foraging activity per hour was greater using active than passive sampling for big brown bats and greater using passive than active sampling for little brown bats. There was no significant difference in recorded activity between methods for other WNS-impacted species, presumably because these species have been so reduced in number that their “apparency” on the landscape is lower. Finally, a cost analysis of standard passive and active sampling protocols revealed that passive sampling is substantially more cost-effective than active sampling per hour of data collection. We recommend passive sampling over active sampling methodologies as they are defined in our study for detection probability and/or occupancy studies focused on declining bat species in areas that have experienced severe WNS-associated impacts.


Sign in / Sign up

Export Citation Format

Share Document