scholarly journals Finite Element Analysis of a New Dental Implant Design Optimized for the Desirable Stress Distribution in the Surrounding Bone Region

Prosthesis ◽  
2020 ◽  
Vol 2 (3) ◽  
pp. 225-236 ◽  
Author(s):  
Luigi Paracchini ◽  
Christian Barbieri ◽  
Mattia Redaelli ◽  
Domenico Di Croce ◽  
Corrado Vincenzi ◽  
...  

Dental implant macro- and micro-shape should be designed to maximize the delivery of optimal favorable stresses in the surrounding bone region. The present study aimed to evaluate the stress distribution in cortical and cancellous bone surrounding two models of dental implants with the same diameter and length (4.0 × 11 mm) and different implant/neck design and thread patterns. Sample A was a standard cylindric implant with cylindric neck and V-shaped threads, and sample B was a new conical implant with reverse conical neck and with “nest shape” thread design, optimized for the favorable stress distribution in the peri-implant marginal bone region. Materials and methods: The three-dimensional model was composed of trabecular and cortical bone corresponding to the first premolar mandibular region. The response to static forces on the samples A and B were compared by finite element analysis (FEA) using an axial load of 100 N and an oblique load of 223.6 N (resulting from a vertical load of 100 N and a horizontal load of 200 N). Results: Both samples provided acceptable results under loadings, but the model B implant design showed lower strain values than the model A implant design, especially in cortical bone surrounding the neck region of the implant. Conclusions: Within the limitation of the present study, analyses suggest that the new dental implant design may minimize the transfer of stress to the peri-implant cortical bone.

2015 ◽  
Vol 113 (6) ◽  
pp. 548-557 ◽  
Author(s):  
Haddad Arabi Bulaqi ◽  
Mahmoud Mousavi Mashhadi ◽  
Hamed Safari ◽  
Mohammad Mahdi Samandari ◽  
Farideh Geramipanah

2021 ◽  
Vol 24 (2) ◽  
Author(s):  
Tarcisio José de Arruda Paes Junior ◽  
João Paulo Mendes Tribst ◽  
Amanda Maria de Oliveira Dal Piva ◽  
Viviane Maria Gonçalves de Figueiredo ◽  
Alexandre Luiz Souto Borges ◽  
...  

Purpose: To evaluate the effect of fibromucosa height on the stress distribution and displacement of mandibular total prostheses during posterior unilateral load, posterior bilateral load and anterior guidance using the finite element analysis (FEA). Material and methods: 3D virtual models were made to simulate the stress generated during different mandibular movements in a total prosthesis. The contacts were simulated according to the physiology, being considered perfectly bonded between cortical and medullar bones; and between cortical bone and mucosa. Non-linear frictional contact was used for the total prosthesis base and fibromucosa, allowing the prosthesis to slide over the tissue. The cortical bone base was fixed and the 100 N load was applied as unilateral load, posterior bilateral load and anterior guidance simulation. The required results were for maximum principal stress (MPa), microstrain (mm/mm) and total displacement (mm). The numerical results were converted into colorimetric maps and arranged according to corresponding scales. Results: The stress generated in all situations was directly proportional to the fibromucosa height. The maximum principal stress results demonstrated greater magnitude for anterior guidance, posterior unilateral and posterior bilateral, respectively. Only posterior unilateral load demonstrated an increase in bone microstrain, regardless of the fibromucosa height. Prosthesis displacement was lower under posterior bilateral loading. Conclusion: Posterior bilateral loading is indicated for total prosthesis because it allows lower prosthesis displacement, lower stress concentration at the base of the prosthesis and less bone microstrain.   Keywords Finite element analysis; Occlusion; Total prosthesis.


2005 ◽  
Vol 288-289 ◽  
pp. 657-660
Author(s):  
Xue Jun Wang ◽  
R. Wang ◽  
J.M. Luo ◽  
Ji Yong Chen ◽  
Xing Dong Zhang

It is important to obtain mechanical coupling between dental implants and bone, because the lack of mechanical coupling may cause bone loss around implants. In this research, a new cylindrical dental implant composed of three parts was designed to offer favored mechanical environment for the bone. A special gap structure changed the means of the stress transmission and decreased the stress in the cortical bone around the neck of the implant. Through finite element analysis (FEA) of stress distribution in bone around implant-bone interface, the advantages of this new implant (reducing stress concentration in cervical cortex and satisfying varieties of clinical needs) were verified. The peak stress for the new design was about 30 percent less than that of the traditional implant and the flexibility of the design was also confirmed by changing the gap depth and the wall thickness.


2004 ◽  
Vol 30 (4) ◽  
pp. 223-233 ◽  
Author(s):  
J. P. Geng ◽  
W. Xu ◽  
K. B. C. Tan ◽  
G. R. Liu

Abstract An osseointegrated stepped screw dental implant was evaluated using 2-dimensional finite element analysis (FEA). The implant was modeled in a cross section of the posterior human mandible digitized from a computed tomography (CT) generated patient data set. A 15-mm regular platform (RP) Branemark implant with equivalent length and neck diameter was used as a control. The study was performed under a number of clinically relevant parameters: loading at the top of the transmucosal abutment in vertical, horizontal, and 45° oblique 3 orientations. Elastic moduli of the mandible varied from a normal cortical bone level (13.4 GPa) to a trabecular bone level (1.37 GPa). The study indicated that an oblique load and elastic moduli of the cortical bone are important parameters to the implant design optimization. Compared with the cylindrical screw implant, the maximum von Mises stress of the stepped screw implant model was 17.9% lower in the trabecular bone-implant area. The study also showed that the stepped screw implant is suitable for the cortical bone modulus from 10 to 13.4 GPa, which is not necessarily as strict as the Branemark implant, for which a minimum 13.4 GPa cortical bone modulus is recommended.


Sign in / Sign up

Export Citation Format

Share Document