scholarly journals Estimation of Forest Canopy Height and Aboveground Biomass from Spaceborne LiDAR and Landsat Imageries in Maryland

2018 ◽  
Vol 10 (2) ◽  
pp. 344 ◽  
Author(s):  
Mengjia Wang ◽  
Rui Sun ◽  
Zhiqiang Xiao
2005 ◽  
Vol 32 (22) ◽  
pp. n/a-n/a ◽  
Author(s):  
Michael A. Lefsky ◽  
David J. Harding ◽  
Michael Keller ◽  
Warren B. Cohen ◽  
Claudia C. Carabajal ◽  
...  

2019 ◽  
Vol 11 (7) ◽  
pp. 889 ◽  
Author(s):  
Wenjian Ni ◽  
Jiachen Dong ◽  
Guoqing Sun ◽  
Zhiyu Zhang ◽  
Yong Pang ◽  
...  

Applications of stereo imagery acquired by cameras onboard unmanned aerial vehicles (UAVs) as practical forest inventory tools are hindered by the unavailability of ground surface elevation. It is still a challenging issue to remove the elevation of ground surface in leaf-on stereo imagery to extract forest canopy height without the help of lidar data. This study proposed a method for the extraction of forest canopy height through the synthesis of UAV stereo imagery of leaf-on and leaf-off, and further demonstrated that the extracted forest canopy height could be used for the inventory of deciduous forest aboveground biomass (AGB). The points cloud of the leaf-on and leaf-off stereo imagery was firstly extracted by an algorithm of structure from motion (SFM) using the same ground control points (GCP). The digital surface model (DSM) was produced by rasterizing the point cloud of UAV leaf-on. The point cloud of UAV leaf-off was processed by iterative median filtering to remove vegetation points, and the digital terrain model (DTM) was generated by the rasterization of the filtered point cloud. The mean canopy height model (MCHM) was derived from the DSM subtracted by the DTM (i.e., DSM-DTM). Forest AGB maps were generated using models developed based on the MCHM and sampling plots of forest AGB and were evaluated by those of lidar. Results showed that forest AGB maps from UAV stereo imagery were highly correlated with those from lidar data with R2 higher than 0.94 and RMSE lower than 10.0 Mg/ha (i.e., relative RMSE 18.8%). These results demonstrated that UAV stereo imagery could be used as a practical inventory tool for deciduous forest AGB.


2006 ◽  
Vol 33 (5) ◽  
Author(s):  
Michael A. Lefsky ◽  
David J. Harding ◽  
Michael Keller ◽  
Warren B. Cohen ◽  
Claudia C. Carabajal ◽  
...  

Author(s):  
T. Li ◽  
Z. Wang ◽  
J. Peng

Aboveground biomass (AGB) estimation is critical for quantifying carbon stocks and essential for evaluating carbon cycle. In recent years, airborne LiDAR shows its great ability for highly-precision AGB estimation. Most of the researches estimate AGB by the feature metrics extracted from the canopy height distribution of the point cloud which calculated based on precise digital terrain model (DTM). However, if forest canopy density is high, the probability of the LiDAR signal penetrating the canopy is lower, resulting in ground points is not enough to establish DTM. Then the distribution of forest canopy height is imprecise and some critical feature metrics which have a strong correlation with biomass such as percentiles, maximums, means and standard deviations of canopy point cloud can hardly be extracted correctly. In order to address this issue, we propose a strategy of first reconstructing LiDAR feature metrics through Auto-Encoder neural network and then using the reconstructed feature metrics to estimate AGB. To assess the prediction ability of the reconstructed feature metrics, both original and reconstructed feature metrics were regressed against field-observed AGB using the multiple stepwise regression (MS) and the partial least squares regression (PLS) respectively. The results showed that the estimation model using reconstructed feature metrics improved R<sup>2</sup> by 5.44&amp;thinsp;%, 18.09&amp;thinsp;%, decreased RMSE value by 10.06&amp;thinsp;%, 22.13&amp;thinsp;% and reduced RMSE<sub>cv</sub> by 10.00&amp;thinsp;%, 21.70&amp;thinsp;% for AGB, respectively. Therefore, reconstructing LiDAR point feature metrics has potential for addressing AGB estimation challenge in dense canopy area.


2021 ◽  
Vol 13 (15) ◽  
pp. 2882
Author(s):  
Hao Chen ◽  
Shane R. Cloude ◽  
Joanne C. White

In this paper, we consider a new method for forest canopy height estimation using TanDEM-X single-pass radar interferometry. We exploit available information from sample-based, space-borne LiDAR systems, such as the Global Ecosystem Dynamics Investigation (GEDI) sensor, which offers high-resolution vertical profiling of forest canopies. To respond to this, we have developed a new extended Fourier-Legendre series approach for fusing high-resolution (but sparsely spatially sampled) GEDI LiDAR waveforms with TanDEM-X radar interferometric data to improve wide-area and wall-to-wall estimation of forest canopy height. Our key methodological development is a fusion of the standard uniform assumption for the vertical structure function (the SINC function) with LiDAR vertical profiles using a Fourier-Legendre approach, which produces a convergent series of approximations of the LiDAR profiles matched to the interferometric baseline. Our results showed that in our test site, the Petawawa Research Forest, the SINC function is more accurate in areas with shorter canopy heights (<~27 m). In taller forests, the SINC approach underestimates forest canopy height, whereas the Legendre approach avails upon simulated GEDI forest structural vertical profiles to overcome SINC underestimation issues. Overall, the SINC + Legendre approach improved canopy height estimates (RMSE = 1.29 m) compared to the SINC approach (RMSE = 4.1 m).


2021 ◽  
Vol 172 ◽  
pp. 79-94
Author(s):  
Maryam Pourshamsi ◽  
Junshi Xia ◽  
Naoto Yokoya ◽  
Mariano Garcia ◽  
Marco Lavalle ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document