scholarly journals Estimation of Burned Area in the Northeastern Siberian Boreal Forest from a Long-Term Data Record (LTDR) 1982–2015 Time Series

2018 ◽  
Vol 10 (6) ◽  
pp. 940 ◽  
Author(s):  
José García-Lázaro ◽  
José Moreno-Ruiz ◽  
David Riaño ◽  
Manuel Arbelo
Fire ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 74
Author(s):  
Gonzalo Otón ◽  
José Miguel C. Pereira ◽  
João M. N. Silva ◽  
Emilio Chuvieco

We present an analysis of the spatio-temporal trends derived from long-term burned area (BA) data series. Two global BA products were included in our analysis, the FireCCI51 (2001–2019) and the FireCCILT11 (1982–2018) datasets. The former was generated from Moderate Resolution Imaging Spectroradiometer (MODIS) 250 m reflectance data, guided by 1 km active fires. The FireCCILT11 dataset was generated from Land Long-Term Data Record data (0.05°), which provides a consistent time series for Advanced Very High Resolution Radiometer images, acquired from the NOAA satellite series. FireCCILT11 is the longest time series of a BA product currently available, making it possible to carry out temporal analysis of long-term trends. Both products were developed under the FireCCI project of the European Space Agency. The two datasets were pre-processed to correct for temporal autocorrelation. Unburnable areas were removed and the lack of the FireCCILT11 data in 1994 was examined to evaluate the impact of this gap on the BA trends. An analysis and comparison between the two BA products was performed using a contextual approach. Results of the contextual Mann-Kendall analysis identified significant trends in both datasets, with very different regional values. The long-term series presented larger clusters than the short-term ones. Africa displayed significant decreasing trends in the short-term, and increasing trends in the long-term data series, except in the east. In the long-term series, Eastern Africa, boreal regions, Central Asia and South Australia showed large BA decrease clusters, and Western and Central Africa, South America, USA and North Australia presented BA increase clusters.


2019 ◽  
Vol 124 (4) ◽  
pp. 2008-2030 ◽  
Author(s):  
Yuanjie Zhang ◽  
Dan Li ◽  
Zekun Lin ◽  
Joseph A. Santanello ◽  
Zhiqiu Gao

2004 ◽  
Vol 380 (3) ◽  
pp. 493-501 ◽  
Author(s):  
Christian Temme ◽  
Ralf Ebinghaus ◽  
J�rgen W. Einax ◽  
Alexandra Steffen ◽  
William H. Schroeder

2020 ◽  
Author(s):  
Simone T. Andersen ◽  
Lucy J. Carpenter ◽  
Beth S. Nelson ◽  
Luis Neves ◽  
Katie A. Read ◽  
...  

Abstract. Atmospheric nitrogen oxides (NO + NO2 = NOx) have been measured at the Cape Verde Atmospheric Observatory (CVAO) in the tropical Atlantic (16° 51' N, 24° 52' W) since October 2006. These measurements represent a unique time series of NOx in the background remote troposphere. Nitrogen dioxide (NO2) is measured via photolytic conversion to nitric oxide (NO) by ultra violet light emitting diode arrays followed by chemiluminescence detection. Since the measurements began, a blue light converter (BLC) has been used for NO2 photolysis, with a maximum spectral output of 395 nm from 2006–2015 and of 385 nm from 2015. The original BLC used was constructed with a Teflon-like material and appeared to cause an overestimation of NO2 when illuminated. To avoid such interferences, a new additional photolytic converter (PLC) with a quartz photolysis cell (maximum spectral output also 385 nm) was implemented in March 2017. Once corrections are made for the NO2 artefact from the original BLC, the two NO2 converters are shown to give comparable NO2 mixing ratios (PLC = 0.92 × BLC, R2 = 0.92), giving confidence in the quantitative measurement of NOx at very low levels. Data analysis methods for the NOx measurements made at CVAO have been developed and applied to the entire time series to produce an internally consistent and high quality long-term data set. NO has a clear diurnal pattern with a maximum mixing ratio of 2–10 pptV during the day depending on the season and ~0 pptV during the night. NO2 shows a fairly flat diurnal signal, although a small increase in daytime NOx is evident in some months. Monthly average mixing ratios of NO2 vary between 5 and 30 pptV depending on the season. Clear seasonal trends in NO and NO2 levels can be observed with a maximum in autumn/winter and a minimum in spring/summer.


Author(s):  
G. C. Hays ◽  
A. J. Warner

The mean annual towing speed of the Continuous Plankton Recorder (CPR) varied systematically between 1946 and 1991. By mounting a pressure transducer on the CPR to record towing depth, it was shown, however, that changes in towing speed did not cause a significant change in towing depth, although the mean towing depth (6–7 m, SD=l-7 m, N=77) was shallower than the previously assumed towing depth of 10 m. Thus the observed changes in towing speed are unlikely to have caused discontinuities in the CPR time-series by affecting sampling depth.Long-term data sets play an important role in attempts to understand the causes of fluctua- tions in plankton abundance. The Continuous Plankton Recorder (CPR) survey provides multi- decadal information on plankton abundance in the North Sea and North Atlantic (McGowan, 1990), and is one of the longest standing marine plankton abundance time-series. However, while the CPR time-series has great potential, as with all other data sets spanning many years, questions may be asked regarding the consistency with which the data have been collected and hence the true continuity of the time-series.


Sign in / Sign up

Export Citation Format

Share Document