scholarly journals Modelling the Vertical Distribution of Phytoplankton Biomass in the Mediterranean Sea from Satellite Data: A Neural Network Approach

2018 ◽  
Vol 10 (10) ◽  
pp. 1666 ◽  
Author(s):  
Michela Sammartino ◽  
Salvatore Marullo ◽  
Rosalia Santoleri ◽  
Michele Scardi

Knowledge of the vertical structure of the bio-chemical properties of the ocean is crucial for the estimation of primary production, phytoplankton distribution, and biological modelling. The vertical profiles of chlorophyll-a (Chla) are available via in situ measurements that are usually quite rare and not uniformly distributed in space and time. Therefore, obtaining estimates of the vertical profile of the Chla field from surface observations is a new challenge. In this study, we employed an Artificial Neural Network (ANN) to reconstruct the 3-Dimensional (3D) Chla field in the Mediterranean Sea from surface satellite estimates. This technique is able to reproduce the highly nonlinear nature of the relationship between different input variables. A large in situ dataset of temperature and Chla calibrated fluorescence profiles, covering almost all Mediterranean Sea seasonal conditions, was used for the training and test of the network. To separate sources of errors due to surface Chla and temperature satellite estimates, from errors due to the ANN itself, the method was first applied using in situ surface data and then using satellite data. In both cases, the validation against in situ observations shows comparable statistical results with respect to the training, highlighting the feasibility of applying an ANN to infer the vertical Chla field from surface in situ and satellite estimates. We also analyzed the usefulness of our approach to resolve the Chla prediction at small temporal scales (e.g., day) by comparing it with the most widely used Mediterranean climatology (MEDATLAS). The results demonstrated that, generally, our method is able to reproduce the most reliable profile of Chla from synoptical satellite observations, thus resolving finer spatial and temporal scales with respect to climatology, which can be crucial for several marine applications. We demonstrated that our 3D reconstructed Chla field could represent a valid alternative to overcome the absence or discontinuity of in situ sampling.

2009 ◽  
Vol 60 (12) ◽  
pp. 3051-3059 ◽  
Author(s):  
Hossam Adel Zaqoot ◽  
Abdul Khalique Ansari ◽  
Mukhtiar Ali Unar ◽  
Shaukat Hyat Khan

Artificial Neural Networks (ANNs) are flexible tools which are being used increasingly to predict and forecast water resources variables. The human activities in areas surrounding enclosed and semi-enclosed seas such as the Mediterranean Sea always produce in the long term a strong environmental impact in the form of coastal and marine degradation. The presence of dissolved oxygen is essential for the survival of most organisms in the water bodies. This paper is concerned with the use of ANNs — Multilayer Perceptron (MLP) and Radial Basis Function neural networks for predicting the next fortnight’s dissolved oxygen concentrations in the Mediterranean Sea water along Gaza. MLP and Radial Basis Function (RBF) neural networks are trained and developed with reference to five important oceanographic variables including water temperature, wind velocity, turbidity, pH and conductivity. These variables are considered as inputs of the network. The data sets used in this study consist of four years and collected from nine locations along Gaza coast. The network performance has been tested with different data sets and the results show satisfactory performance. Prediction results prove that neural network approach has good adaptability and extensive applicability for modelling the dissolved oxygen in the Mediterranean Sea along Gaza. We hope that the established model will help in assisting the local authorities in developing plans and policies to reduce the pollution along Gaza coastal waters to acceptable levels.


2020 ◽  
Author(s):  
Marine Fourrier ◽  
Laurent Coppola ◽  
Fabrizio D'Ortenzio

<p>The semi-enclosed nature of the Mediterranean Sea, together with its small inertia which is due to the relatively short residence time of its water masses, make it highly reactive to external forcings and anthropogenic pressure. In this context, several rapid changes have been observed in physical and biogeochemical processes in recent decades, partly masked by episodic events and high regional variability. To better understand the underlying processes driving the Mediterranean evolution and, anticipate changes, the measurement, and integration of many biogeochemical variables are mandatory.</p><p>The development of new BGC sensors implemented on <em>in situ</em> autonomous platforms allows to increase the acquisition of essential biogeochemical variables. However, the measurements carried out by<em> in situ</em> autonomous platforms (e.g. profiling floats, gliders, moorings) are not exhaustive.</p><p>Recently, deep learning techniques and in particular neural networks have been developed. The CANYON-MED (for Carbonate system and Nutrients concentration from hYdrological properties and Oxygen using a Neural-network in the MEDiterranean Sea) neural network-based method provides estimations of nutrients (i.e. nitrates, phosphates, and silicates) and carbonate system variables (i.e. total alkalinity, dissolved inorganic carbon, pH<sub>T</sub>) from systematically measured oceanographic variables such as in situ measurements of pressure, temperature, salinity, and oxygen together with geolocation and date of sampling.</p><p>This regional approach, therefore, using quality-controlled in situ measurements from more than 35 cruises. CANYON-MED obtains satisfactory results: accuracies of 0.73, 0.045, and 0.70 µmol.kg<sup>-1</sup> for the nitrates, phosphates and silicates concentrations respectively, and 0.016, 11 µmol.kg<sup>-1</sup> and 10 µmol.kg<sup>-1</sup> for pH<sub>T</sub>, total alkalinity and dissolved organic carbon respectively. CANYON-MED thus generates “virtual” data of parameters not yet measured by autonomous platforms, while ably reproducing the data already sampled, emphasizing its ability to fill the gaps in time-series.</p><p>Hence, by applying it to the large and growing network of autonomous platforms in the Mediterranean Sea, this method allows us to gain new insights into nutrients and carbonate system dynamics in targeted areas. In particular, in the northwestern Mediterranean Sea, the impact of deep convection on biogeochemistry (e.g., nutrient replenishment and pH<sub>T</sub> variability) is highly variable over time and poorly covered by observing networks. In this case, CANYON-MED would improve our observations and understanding of the dynamic and coupled system.</p>


2021 ◽  
Vol 14 (10) ◽  
Author(s):  
Nadia AbouAly ◽  
Karem Abdelmohsen ◽  
Matthias Becker ◽  
Abdel-Monem S. Mohamed ◽  
Abotalib Z. Abotalib ◽  
...  

2018 ◽  
Author(s):  
Athanasia Iona ◽  
Athanasios Theodorou ◽  
Sarantis Sofianos ◽  
Sylvain Watelet ◽  
Charles Troupin ◽  
...  

Abstract. We present a new product composed of a set of thermohaline climatic indices from 1950 to 2015 for the Mediterranean Sea such as decadal temperature and salinity anomalies, their mean values over selected depths, decadal ocean heat and salt content anomalies at selected depth layers as well as their long times series. It is produced from a new high-resolution climatology of temperature and salinity on a 1/8° regular grid based on historical high quality in situ observations. Ocean heat and salt content differences between 1980–2015 and 1950–1979 are compared for evaluation of the climate shift in the Mediterranean Sea. The spatial patterns of heat and salt content shifts demonstrate in greater detail than ever before that the climate changes differently in the several regions of the basin. Long time series of heat and salt content for the period 1950 to 2015 are also provided which indicate that in the Mediterranean Sea there is a net mean volume warming and salting since 1950 with acceleration during the last two decades. The time series also show that the ocean heat content seems to fluctuate on a cycle of about 40 years and seems to follow the Atlantic Multidecadal Oscillation climate cycle indicating that the natural large scale atmospheric variability could be superimposed on to the warming trend. This product is an observations-based estimation of the Mediterranean climatic indices. It relies solely on spatially interpolated data produced from in-situ observations averaged over decades in order to smooth the decadal variability and reveal the long term trends with more accuracy. It can provide a valuable contribution to the modellers' community, next to the satellite-based products and serve as a baseline for the evaluation of climate-change model simulations contributing thus to a better understanding of the complex response of the Mediterranean Sea to the ongoing global climate change. The product is available here: https://doi.org/10.5281/zenodo.1210100.


2019 ◽  
Vol 197 ◽  
pp. 103176 ◽  
Author(s):  
Valeria Di Biagio ◽  
Gianpiero Cossarini ◽  
Stefano Salon ◽  
Paolo Lazzari ◽  
Stefano Querin ◽  
...  

2019 ◽  
Vol 11 (19) ◽  
pp. 2191 ◽  
Author(s):  
Encarni Medina-Lopez ◽  
Leonardo Ureña-Fuentes

The aim of this work is to obtain high-resolution values of sea surface salinity (SSS) and temperature (SST) in the global ocean by using raw satellite data (i.e., without any band data pre-processing or atmospheric correction). Sentinel-2 Level 1-C Top of Atmosphere (TOA) reflectance data is used to obtain accurate SSS and SST information. A deep neural network is built to link the band information with in situ data from different buoys, vessels, drifters, and other platforms around the world. The neural network used in this paper includes shortcuts, providing an improved performance compared with the equivalent feed-forward architecture. The in situ information used as input for the network has been obtained from the Copernicus Marine In situ Service. Sentinel-2 platform-centred band data has been processed using Google Earth Engine in areas of 100 m × 100 m. Accurate salinity values are estimated for the first time independently of temperature. Salinity results rely only on direct satellite observations, although it presented a clear dependency on temperature ranges. Results show the neural network has good interpolation and extrapolation capabilities. Test results present correlation coefficients of 82 % and 84 % for salinity and temperature, respectively. The most common error for both SST and SSS is 0.4 ∘ C and 0 . 4 PSU. The sensitivity analysis shows that outliers are present in areas where the number of observations is very low. The network is finally applied over a complete Sentinel-2 tile, presenting sensible patterns for river-sea interaction, as well as seasonal variations. The methodology presented here is relevant for detailed coastal and oceanographic applications, reducing the time for data pre-processing, and it is applicable to a wide range of satellites, as the information is directly obtained from TOA data.


Author(s):  
Han-Xiong Huang ◽  
Dong Li

As the plastics extrusion blow molded parts are getting more and more complex, it is necessary to optimize the parison dimension distribution. Predicting the parison dimension distribution is useful to optimize the thickness distribution and property of the final part. The dependency between parison dimensions and materials characteristics, processing conditions, and die geometry is a highly nonlinear and fully coupled one. In this work, diameter and thickness swells of the high-density polyethylene parison extruded under different flow rates were obtained by a well-designed experiment. The obtained data were then used to train and test the artificial neural network (ANN) model. Trained and tested ANN model can be used to predict the dimensions at any location on the parison within a given range.


Sign in / Sign up

Export Citation Format

Share Document