scholarly journals Error Source Analysis and Correction of GF-3 Polarimetric Data

2018 ◽  
Vol 10 (11) ◽  
pp. 1685 ◽  
Author(s):  
Sha Jiang ◽  
Xiaolan Qiu ◽  
Bing Han ◽  
Jili Sun ◽  
Chibiao Ding

The GaoFen-3 (GF-3) satellite is the first polarimetric synthetic aperture radar (PolSAR) satellite in China. With a designed in-orbit life of 8 years, it will provide large amounts of PolSAR data for ocean monitoring, disaster reduction, and many other applications. The polarimetric data quality is essential for all these applications, so the analysis and calibration of the polarimetric error sources are very important for GF-3. In this study, we established a full-link error model for GF-3 PolSAR system. Based on this model, we comprehensively analyzed the quantitative effects of the main error sources including the composition, figured out characteristics of the phase imbalance introduced by the antenna, and pointed out the error sources which have to be corrected. Furthermore, the polarimetric correction method for GF-3 PolSAR system is proposed. Finally, assisted by several external calibration experiments, polarimetric errors of GF-3 data are efficiently corrected during in-orbit-test phase.

Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5176
Author(s):  
Guannan Li ◽  
Ying Li ◽  
Bingxin Liu ◽  
Peng Wu ◽  
Chen Chen

Polarimetric synthetic aperture radar is an important tool in the effective detection of marine oil spills. In this study, two cases of Radarsat-2 Fine mode quad-polarimetric synthetic aperture radar datasets are exploited to detect a well-known oil seep area that collected over the Gulf of Mexico using the same research area, sensor, and time. A novel oil spill detection scheme based on a multi-polarimetric features model matching method using spectral pan-similarity measure (SPM) is proposed. A multi-polarimetric features curve is generated based on optimal polarimetric features selected using Jeffreys–Matusita distance considering its ability to discriminate between thick and thin oil slicks and seawater. The SPM is used to search for and match homogeneous unlabeled pixels and assign them to a class with the highest similarity to their spectral vector size, spectral curve shape, and spectral information content. The superiority of the SPM for oil spill detection compared to traditional spectral similarity measures is demonstrated for the first time based on accuracy assessments and computational complexity analysis by comparing with four traditional spectral similarity measures, random forest (RF), support vector machine (SVM), and decision tree (DT). Experiment results indicate that the proposed method has better oil spill detection capability, with a higher average accuracy and kappa coefficient (1.5–7.9% and 1–25% higher, respectively) than the four traditional spectral similarity measures under the same computational complexity operations. Furthermore, in most cases, the proposed method produces valuable and acceptable results that are better than the RF, SVM, and DT in terms of accuracy and computational complexity.


2021 ◽  
Vol 13 (9) ◽  
pp. 1607
Author(s):  
Guannan Li ◽  
Ying Li ◽  
Yongchao Hou ◽  
Xiang Wang ◽  
Lin Wang

Marine oil spill detection is vital for strengthening the emergency commands of oil spill accidents and repairing the marine environment after a disaster. Polarimetric Synthetic Aperture Radar (Pol-SAR) can obtain abundant information of the targets by measuring their complex scattering matrices, which is conducive to analyze and interpret the scattering mechanism of oil slicks, look-alikes, and seawater and realize the extraction and detection of oil slicks. The polarimetric features of quad-pol SAR have now been extended to oil spill detection. Inspired by this advancement, we proposed a set of improved polarimetric feature combination based on polarimetric scattering entropy H and the improved anisotropy A12–H_A12. The objective of this study was to improve the distinguishability between oil slicks, look-alikes, and background seawater. First, the oil spill detection capability of the H_A12 combination was observed to be superior than that obtained using the traditional H_A combination; therefore, it can be adopted as an alternate oil spill detection strategy to the latter. Second, H(1 − A12) combination can enhance the scattering randomness of the oil spill target, which outperformed the remaining types of polarimetric feature parameters in different oil spill scenarios, including in respect to the relative thickness information of oil slicks, oil slicks and look-alikes, and different types of oil slicks. The evaluations and comparisons showed that the proposed polarimetric features can indicate the oil slick information and effectively suppress the sea clutter and look-alike information.


2020 ◽  
Author(s):  
D Santana-Cedres ◽  
L Gomez ◽  
L Alvarez ◽  
Alejandro Frery

© 2004-2012 IEEE. In this letter, we propose a new despeckling filter for fully polarimetric synthetic aperture radar (PolSAR) images defined by 3× 3 complex Wishart distributions. We first generalize the well-known structure tensor to deal with PolSAR data which allows to efficiently measure the dominant direction and contrast of edges. The generalization includes stochastic distances defined in the space of the Wishart matrices. Then, we embed the formulation into an anisotropic diffusion-like schema to build a filter able to reduce speckle and preserve edges. We evaluate its performance through an innovative experimental setup that also includes Monte Carlo analysis. We compare the results with a state-of-the-art polarimetric filter.


Sign in / Sign up

Export Citation Format

Share Document