scholarly journals Fusion Feature Multi-Scale Pooling for Water Body Extraction from Optical Panchromatic Images

2019 ◽  
Vol 11 (3) ◽  
pp. 245 ◽  
Author(s):  
Baogui Qi ◽  
Yin Zhuang ◽  
He Chen ◽  
Shan Dong ◽  
Lianlin Li

Water body extraction is a hot research topic in remote sensing applications. Using panchromatic optical remote sensing images to extract water bodies is a challenging task, because these images have one level of gray information, variable imaging conditions, and complex scene information. Refined water body extraction from optical panchromatic images often experiences serious under- or over- segmentation problems. In this paper, for producing refined water body extraction results from optical panchromatic images, we propose a fusion feature multi-scale pooling for Markov modeling method. Markov modeling includes two aspects: label field initialization and feature field establishment. These two aspects are jointly created by the fusion feature multi-scale pooling process, and this process is proposed to enhance the feature difference between water bodies and land cover. Then, the greedy algorithm in the iteration conditional method is used to extract refined water bodies according to the rebuilt Markov initial label and feature fields. Finally, to prove the effectiveness of proposed method, extensive experiments were used with collected 2.5m SPOT 5 and 1m GF-2 optical panchromatic images and evaluation indexes (precision, recall, overall accuracy, kappa coefficient and boundary detection ratios) to demonstrate that our proposed method can produce more refined water body extraction results than the state-of-the-art methods. The global and local refined indexes are improved by about 7% and 10%, respectively.

2020 ◽  
Vol 9 (4) ◽  
pp. 189 ◽  
Author(s):  
Hongxiang Guo ◽  
Guojin He ◽  
Wei Jiang ◽  
Ranyu Yin ◽  
Lei Yan ◽  
...  

Automatic water body extraction method is important for monitoring floods, droughts, and water resources. In this study, a new semantic segmentation convolutional neural network named the multi-scale water extraction convolutional neural network (MWEN) is proposed to automatically extract water bodies from GaoFen-1 (GF-1) remote sensing images. Three convolutional neural networks for semantic segmentation (fully convolutional network (FCN), Unet, and Deeplab V3+) are employed to compare with the water bodies extraction performance of MWEN. Visual comparison and five evaluation metrics are used to evaluate the performance of these convolutional neural networks (CNNs). The results show the following. (1) The results of water body extraction in multiple scenes using the MWEN are better than those of the other comparison methods based on the indicators. (2) The MWEN method has the capability to accurately extract various types of water bodies, such as urban water bodies, open ponds, and plateau lakes. (3) By fusing features extracted at different scales, the MWEN has the capability to extract water bodies with different sizes and suppress noise, such as building shadows and highways. Therefore, MWEN is a robust water extraction algorithm for GaoFen-1 satellite images and has the potential to conduct water body mapping with multisource high-resolution satellite remote sensing data.


2020 ◽  
Vol 12 (24) ◽  
pp. 4140
Author(s):  
Zhaobin Wang ◽  
Xiong Gao ◽  
Yaonan Zhang ◽  
Guohui Zhao

Lake water body extraction from remote sensing images is a key technique for spatial geographic analysis. It plays an important role in the prevention of natural disasters, resource utilization, and water quality monitoring. Inspired by the recent years of research in computer vision on fully convolutional neural networks (FCN), an end-to-end trainable model named the multi-scale lake water extraction network (MSLWENet) is proposed. We use ResNet-101 with depthwise separable convolution as an encoder to obtain the high-level feature information of the input image and design a multi-scale densely connected module to expand the receptive field of feature points by different dilation rates without increasing the computation. In the decoder, the residual convolution is used to abstract the features and fuse the features at different levels, which can obtain the final lake water body extraction map. Through visual interpretation of the experimental results and the calculation of the evaluation indicators, we can see that our model extracts the water bodies of small lakes well and solves the problem of large intra-class variance and small inter-class variance in the lakes’ water bodies. The overall accuracy of our model is up to 98.53% based on the evaluation indicators. Experimental results demonstrate that the MSLWENet, which benefits from the convolutional neural network, is an excellent lake water body extraction network.


2020 ◽  
Vol 12 (4) ◽  
pp. 716 ◽  
Author(s):  
Yelong Zhao ◽  
Qian Shen ◽  
Qian Wang ◽  
Fan Yang ◽  
Shenglei Wang ◽  
...  

As polluted water bodies are often small in area and widely distributed, performing artificial field screening is difficult; however, remote-sensing-based screening has the advantages of being rapid, large-scale, and dynamic. Polluted water bodies often show anomalous water colours, such as black, grey, and red. Therefore, the large-scale recognition of suspected polluted water bodies through high-resolution remote-sensing images and water colour can improve the screening efficiency and narrow the screening scope. However, few studies have been conducted on such kinds of water bodies. The hue angle of a water body is a parameter used to describe colour in the International Commission on Illumination (CIE) colour space. Based on the measured data, the water body with a hue angle greater than 230.958° is defined as a water colour anomaly, which is recognised based on the Sentinel-2 image through the threshold set in this study. The results showed that the hue angle of the water body was extracted from the Sentinel-2 image, and the accuracy of the hue angle calculated by the in situ remote-sensing reflectance Rrs (λ) was evaluated, where the root mean square error (RMSE) and mean relative error (MRE) were 4.397° and 1.744%, respectively, proving that this method is feasible. The hue angle was calculated for a water colour anomaly and a general water body in Qiqihar. The water body was regarded as a water colour anomaly when the hue angle was >230.958° and as a general water body when the hue angle was ≤230.958°. High-quality Sentinel-2 images of Qiqihar taken from May 2016 to August 2019 were chosen, and the position of the water body remained unchanged; there was no error or omission, and the hue angle of the water colour anomaly changed obviously, indicating that this method had good stability. Additionally, the method proposed is only suitable for optical deep water, not for optical shallow water. When this method was applied to Xiong’an New Area, the results showed good recognition accuracy, demonstrating good universality of this method. In this study, taking Qiqihar as an example, a surface survey experiment was conducted from October 14 to 15, 2018, and the measured data of six general and four anomalous water sample points were obtained, including water quality terms such as Rrs (λ), transparency, water colour, water temperature, and turbidity.


2020 ◽  
Vol 12 (21) ◽  
pp. 3469
Author(s):  
Bilawal Abbasi ◽  
Zhihao Qin ◽  
Wenhui Du ◽  
Jinlong Fan ◽  
Chunliang Zhao ◽  
...  

The atmosphere has substantial effects on optical remote sensing imagery of the Earth’s surface from space. These effects come through the functioning of atmospheric particles on the radiometric transfer from the Earth’s surface through the atmosphere to the sensor in space. Precipitable water vapor (PWV), CO2, ozone, and aerosol in the atmosphere are very important among the particles through their functioning. This study presented an algorithm to retrieve total PWV from the Chinese second-generation polar-orbiting meteorological satellite FengYun 3D Medium Resolution Spectral Imager 2 (FY-3D MERSI-2) data, which have three near-infrared (NIR) water vapor absorbing channels, i.e., channel 16, 17, and 18. The algorithm was improved from the radiance ratio technique initially developed for Moderate-Resolution Imaging Spectroradiometer (MODIS) data. MODTRAN 5 was used to simulate the process of radiant transfer from the ground surfaces to the sensor at various atmospheric conditions for estimation of the coefficients of ratio technique, which was achieved through statistical regression analysis between the simulated radiance and transmittance values for FY-3D MERSI-2 NIR channels. The algorithm was then constructed as a linear combination of the three-water vapor absorbing channels of FY-3D MERSI-2. Measurements from two ground-based reference datasets were used to validate the algorithm: the sun photometer measurements of Aerosol Robotic Network (AERONET) and the microwave radiometer measurements of Energy’s Atmospheric Radiation Measurement Program (ARMP). The validation results showed that the algorithm performs very well when compared with the ground-based reference datasets. The estimated PWV values come with root mean square error (RMSE) of 0.28 g/cm2 for the ARMP and 0.26 g/cm2 for the AERONET datasets, with bias of 0.072 g/cm2 and 0.096 g/cm2 for the two reference datasets, respectively. The accuracy of the proposed algorithm revealed a better consistency with ground-based reference datasets. Thus, the proposed algorithm could be used as an alternative to retrieve PWV from FY-3D MERSI-2 data for various remote sensing applications such as agricultural monitoring, climate change, hydrologic cycle, and so on at various regional and global scales.


2019 ◽  
Vol 11 (9) ◽  
pp. 2580 ◽  
Author(s):  
Tainá T. Guimarães ◽  
Maurício R. Veronez ◽  
Emilie C. Koste ◽  
Eniuce M. Souza ◽  
Diego Brum ◽  
...  

The concentration of suspended solids in water is one of the quality parameters that can be recovered using remote sensing data. This paper investigates the data obtained using a sensor coupled to an unmanned aerial vehicle (UAV) in order to estimate the concentration of suspended solids in a lake in southern Brazil based on the relation of spectral images and limnological data. The water samples underwent laboratory analysis to determine the concentration of total suspended solids (TSS). The images obtained using the UAV were orthorectified and georeferenced so that the values referring to the near, green, and blue infrared channels were collected at each sampling point to relate with the laboratory data. The prediction of the TSS concentration was performed using regression analysis and artificial neural networks. The obtained results were important for two main reasons. First, although regression methods have been used in remote sensing applications, they may not be adequate to capture the linear and/or non-linear relationships of interest. Second, results show that the integration of UAV in the mapping of water bodies together with the application of neural networks in the data analysis is a promising approach to predict TSS as well as their temporal and spatial variations.


Author(s):  
Rahul Neware ◽  
Mansi Thakare

The technique of obtaining information or data about any feature or object from afar, called in technical parlance as remote sensing, has proven extremely useful in diverse fields. In the ecological sphere, especially, remote sensing has enabled collection of data or information about large swaths of areas or landscapes. Even then, in remote sensing the task of identifying and monitoring of different water reservoirs has proved a tough one. This is mainly because getting correct appraisals about the spread and boundaries of the area under study and the contours of any water surfaces lodged therein becomes a factor of utmost importance. Identification of water reservoirs is rendered even tougher because of presence of cloud in satellite images, which becomes the largest source of error in identification of water surfaces. To overcome this glitch, the method of the shape matching approach for analysis of cloudy images in reference to cloud-free images of water surfaces with the help of vector data processing, is recommended. It includes the database of water bodies in vector format, which is a complex polygon structure. This analysis highlights three steps: First, the creation of vector database for the analysis; second, simplification of multi-scale vector polygon features; and third, the matching of reference and target water bodies database within defined distance tolerance. This feature matching approach provides matching of one to many and many to many features. It also gives the corrected images that are free of clouds.


Sign in / Sign up

Export Citation Format

Share Document