scholarly journals A Fisheye Image Matching Method Boosted by Recursive Search Space for Close Range Photogrammetry

2019 ◽  
Vol 11 (12) ◽  
pp. 1404 ◽  
Author(s):  
Mariana Batista Campos ◽  
Antonio Maria Garcia Tommaselli ◽  
Letícia Ferrari Castanheiro ◽  
Raquel Alves Oliveira ◽  
Eija Honkavaara

Close range photogrammetry (CRP) with large field-of-view images has become widespread in recent years, especially in terrestrial mobile mapping systems (TMMS). However, feature-based matching (FBM) with omnidirectional images (e.g., fisheye) is challenging even for state-of-the-art methods, such as the scale-invariant feature transform (SIFT), because of the strong scale change from image to image. This paper proposes an approach to boost FBM techniques on fisheye images with recursive reduction of the search space based on epipolar geometry. The epipolar restriction is calculated with the equidistant mathematical model and the initial exterior orientation parameters (EOPs) determined with navigation sensors from TMMS. The proposed method was assessed with data sets acquired by a low-cost TMMS. The TMMS is composed of a calibrated poly-dioptric system (Ricoh Theta S) and navigation sensors aimed at outdoor applications. The assessments show that Ricoh Theta S position and attitude were estimated in a global bundle adjustment with a precision (standard deviation) of 4 cm and 0.3°, respectively, using as observations the detected matches from the proposed method. Compared with other methods based on SIFT extended to the omnidirectional geometry, our approach achieved compatible results for outdoor applications.

2017 ◽  
Vol 31 (1) ◽  
pp. 16-27 ◽  
Author(s):  
Christopher Gomez ◽  
Kyoko Kataoka ◽  
Aditya Saputra ◽  
Patrick Wassmer ◽  
Atsushi Urabe ◽  
...  

Numerous progress has been made in the field of applied photogrammetry in the last decade, including the usage of close-range photogrammetry as a mean of conservation and record of outcrops. In the present contribution, we use the SfM-MVS method combined with a wavelet decomposition analysis of the surface, in order to relate it to morphological and surface roughness data. The results demonstrated that wavelet decomposition and RMS could provide a rapid insight on the location of coarser materials and individual outliers, while arithmetic surface roughness were more useful to detect units or layers that are similar on the outcrop. The method also emphasizes the fact that the automation of the process does not allows clear distinction between any artefact crack or surface change and that human supervision is still essential despite the original goal of automating the outcrop surface analysis.


2011 ◽  
Vol 6 ◽  
pp. 185-192
Author(s):  
Melanie Kirchhöfer ◽  
Jim Chandler ◽  
Rene Wackrow

Cultural heritage is under a constant threat of damage or even destruction and comprehensive and accurate recording is necessary to attenuate the risk of losing heritage or serve as basis for reconstruction. Cost effective and easy to use methods are required to record cultural heritage, particularly during a world recession, and close-range photogrammetry has proven potential in this area. Off-the-shelf digital cameras can be used to rapidly acquire data at low cost, allowing non-experts to become involved. Exterior orientation of the camera during exposure ideally needs to be established for every image, traditionally requiring known coordinated target points. Establishing these points is time consuming and costly and using targets can be often undesirable on sensitive sites. MEMS-based sensors can assist in overcoming this problem by providing small-size and low-cost means to directly determine exterior orientation for close-range photogrammetry. This paper describes development of an image-based recording system, comprising an off-the-shelf digital SLR camera, a MEMS-based 3D orientation sensor and a GPS antenna. All system components were assembled in a compact and rigid frame that allows calibration of rotational and positional offsets between the components. The project involves collaboration between English Heritage and Loughborough University and the intention is to assess the system’s achievable accuracy and practicability in a heritage recording environment. Tests were conducted at Loughborough University and a case study at St. Catherine’s Oratory on the Isle of Wight, UK. These demonstrate that the data recorded by the system can indeed meet the accuracy requirements for heritage recording at medium accuracy (1-4cm), with either a single or even no control points. As the recording system has been configured with a focus on low-cost and easy-to-use components, it is believed to be suitable for heritage recording by non-specialists. This offers the opportunity for lay people to become more involved in their local heritage, an important aspiration identified by English Heritage. Recently, mobile phones (smartphones) with integrated camera and MEMS-based orientation and positioning sensors have become available. When orientation and position during camera exposure is extracted, these phones establish off-the-shelf systems that can facilitate image-based recording with direct exterior orientation determination. Due to their small size and low-cost they have potential to further enhance the involvement of lay-people in heritage recording. The accuracy currently achievable will be presented also.


2013 ◽  
Vol 475-476 ◽  
pp. 148-155 ◽  
Author(s):  
Da Cheng Li ◽  
Jin Liang ◽  
Hao Hu ◽  
Zheng Zong Tang ◽  
Xiang Guo ◽  
...  

To improve efficiency and automation of the 3D full-field surface strain measurement for sheet metal forming, a new grid strain measuring scheme was developed based on the close-range photogrammetry technology. A Local Canny Detector algorithm was proposed for grid nodes and coded targets detection. A 10-parameters nonlinear camera model and the bundle adjustment algorithm were used to optimize the calibration parameters. A multi-epipolar constraint method was employed for grid node matching. Finally, the surface strains were calculated according to the changes of the grid sizes. To evaluate the performance of the proposed scheme, a stamping forming experiment was conducted. Experimental results show that the scheme can provide a non-contact, intuitive and effective solution for strain measurement in sheet metal forming process.


Author(s):  
L. M. Galantucci ◽  
F. Lavecchia ◽  
G. Percoco

Considerable research effort has been focused on evaluating the accuracy of meso- and macroscale digital close range photogrammetry. However, evaluations of accuracy and applications in the submillimeter scale are rare. In this paper the authors propose the development of a three-dimensional (3D) photogrammetric scanner, based on macrolens cameras, able to reconstruct the three-dimensional surface topography of objects with submillimeter features. The system exploits multifocal image composition and has been designed for installation on all types of Numerical Controlled or Robotic systems. The approach is exploitable for digitizing submillimeter features at mesoscale as well as macroscale objects.


2009 ◽  
Vol 23 (10) ◽  
pp. 1408-1417 ◽  
Author(s):  
Mohamed A. M. Abd Elbasit ◽  
Hisao Anyoji ◽  
Hiroshi Yasuda ◽  
Shunichi Yamamoto

Author(s):  
F. Buffa ◽  
A. Pinna ◽  
G. Sanna

The Sardinia Radio Telescope (SRT) is a 64 m diameter antenna, whose primary mirror is equipped with an active surface capable to correct its deformations by means of a thick network of actuators. Close range photogrammetry (CRP) was used to measure the self-load deformations of the SRT primary reflector from its optimal shape, which are requested to be minimized for the radio telescope to operate at full efficiency. In the attempt to achieve such performance, we conceived a near real-time CRP system which requires the cameras to be installed in fixed positions and at the same time to avoid any interference with the antenna operativeness. The design of such system is not a trivial task, and to assist our decision we therefore developed a simulation pipeline to realistically reproduce and evaluate photogrammetric surveys of large structures. The described simulation environment consists of (i) a detailed description of the SRT model, included the measurement points and the camera parameters, (ii) a tool capable of generating realistic images accordingly to the above model, and (iii) a self-calibrating bundle adjustment to evaluate the performance in terms of RMSE of the camera configurations.


2020 ◽  
Vol 6 (3) ◽  
pp. 446-458
Author(s):  
Marwa Mohammed Bori ◽  
Zahraa Ezzulddin Hussein

As known Close range photogrammetry represents one of the most techniques to create precise 3D model. Metric camera, digital camera, and Laser scanning can be exploited for the photogrammetry with variety level of cost that may be high. In this study, the cost level is taken in to consideration to achieve balance between the cost and the obtained accuracy. This study aims to detect potential of low cost tools for creating 3D model in terms of obtained accuracy and details and comparing it with corresponding studies. Smart phone camera is the most available for everyone; this gave the motivation for use in this study. In addition, Google Earth was used to integrate the 3D model produced from all sides including the roof.  Then, two different types of the mobile camera were used in addition to the DSLR camera (Digital Single Lens Reflex) for comparison and analysis purposes. Thus, this research gave flexibility in work and low cost resulting from replacement the metric camera with the smart camera and the unmanned aerial vehicle (UAV) with Google Earth data. Mechanism of the work can be summarized in four steps. Firstly, photogrammetry planning to determine suitable baselines from object and location of targets that measured using GPS and Total station devices. Secondly, collect images using close range photogrammetry technique. Thirdly, processing step to create the 3D model and integrated with Google Earth images using the Agi Photoscan software. Finally, Comparative and evaluation stage to derive the accuracy and quality of the model obtained from this study using statistical analysis method. Regarding this Study, University of Baghdad, central library was selected as the case study. The results of this paper show that the low cost 3D model resulted from integrating  phone and Google Earth images gave suitable result with mean accuracy level reached to about less than 5 meters compared with DSLR camera result, this may be used for several applications such as  culture heritage and architecture documentation.


2011 ◽  
Vol 6 ◽  
pp. 249-258
Author(s):  
Karel Pavelka ◽  
Jan Řezníček

The 3D scanning is nowadays a commonly used and fast technique. A variety of type’s 3D scanners is available, with different precision and aim of using. From normal user´s point of view, all the instruments are very expensive and need special software for processing the measured data. Also transportation of 3D scanners – poses a problem, because duty or special taxes for transport out of the EU have to be paid and there is a risk of damage to dismantling of these very expensive instruments and calibration will be needed. For this reason, a simple and automated technique using close range photogrammetry documentation is very important. This paper describes our experience with the software solution for automatic image correlation techniques and their utilization in close range photogrammetry and historical objects documentation. Non-photogrammetrical approach, which often gives very good outputs, is described the last part of this contribution. An image correlation proceeds well only on appropriate parts of documented objects and depends on the number of images, their overlapping and configuration, radiometrical quality of photos, and surface texture.


Sign in / Sign up

Export Citation Format

Share Document