scholarly journals Validating the Predictive Power of Statistical Models in Retrieving Leaf Dry Matter Content of a Coastal Wetland from a Sentinel-2 Image

2019 ◽  
Vol 11 (16) ◽  
pp. 1936 ◽  
Author(s):  
Abebe Mohammed Ali ◽  
Roshanak Darvishzadeh ◽  
Kasra Rafiezadeh Shahi ◽  
Andrew Skidmore

Leaf dry matter content (LDMC), the ratio of leaf dry mass to its fresh mass, is a key plant trait, which is an indicator for many critical aspects of plant growth and survival. Accurate and fast detection of the spatiotemporal dynamics of LDMC would help understanding plants’ carbon assimilation and relative growth rate, and may then be used as an input for vegetation process models to monitor ecosystems. Satellite remote sensing is an effective tool for predicting such plant traits non-destructively. However, studies on the applicability of remote sensing for LDMC retrieval are scarce. Only a few studies have looked into the practicality of using remotely sensed data for the prediction of LDMC in a forest ecosystem. In this study, we assessed the performance of partial least squares regression (PLSR) plus 11 widely used vegetation indices (VIs), calculated based on different combinations of Sentinel-2 bands, in predicting LDMC in a coastal wetland. The accuracy of the selected methods was validated using LDMC, destructively measured in 50 randomly distributed sample plots at the study site in Schiermonnikoog, the Netherlands. The PLSR applied to canopy reflectance of Sentinel-2 bands resulted in accurate prediction of LDMC (coefficient of determination (R2) = 0.71, RMSE = 0.033). PLSR applied to the studied VIs provided an R2 of 0.70 and RMSE of 0.033. Four vegetation indices (enhanced vegetation index(EVI), specific leaf area vegetation index (SLAVI), simple ratio vegetation index (SRVI), and visible atmospherically resistant index (VARI)) computed using band 3 (green) and band 11 of the Sentinel-2 performed equally well and achieved a good measure of accuracy (R2 = 0.67, RMSE = 0.034). Our findings demonstrate the feasibility of using Sentinel-2 surface reflectance data to map LDMC in a coastal wetland.

Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5394
Author(s):  
Bin Yang ◽  
Hui Lin ◽  
Yuhao He

Leaf equivalent water thickness (EWT) and dry matter content (expressed as leaf mass per area (LMA)) are two critical traits for vegetation function monitoring, crop yield estimation, and precise agriculture management. Data-driven methods are widely used for remote sensing of leaf EWT and LMA because of their simplicity, satisfactory accuracy, and computation efficiency, such as the vegetation indices (VI)-based and machine learning (ML)-based methods. However, most of the data-driven methods are utilized at the canopy level, comparison of the performances of the data-driven methods at the leaf level has not been well documented. Moreover, the ML-based data-driven methods generally adopt leaf optical properties directly as their inputs, which may subsequently decrease their ability in remote sensing of leaf biochemical constituents. Performances of the ML-based methods cooperating with VI are rarely evaluated. Using the independent LOPEX and ANGERS datasets, we compared the performances of three data-driven methods: VI-based, ML-reflectance-based, and ML-VI-based methods, for the estimation of leaf EWT and LMA. Three sampling strategies were also utilized for evaluation of the generalization of these data-driven methods. Our results evidenced that ML-VI-based methods were the most accurate among these data-driven methods. Compared to the ML-reflectance-based and VI-based methods, the ML-VI-based model with support vector regression overall reduced errors by 5.7% (41.5%) and 1.8% (12.4%) for the estimation of leaf EWT (LMA), respectively. The ML-VI-based model inherits advantages of vegetation indices and ML techniques, which made it sensitive to changes of leaf biochemical constituents and capable of solving nonlinear tasks. It is thus recommended for the estimation of EWT and LMA at the leaf level. Moreover, its performance can further be enhanced by improving its generalization ability, such as adopting techniques on the selection of better wavelengths and definition of new vegetation indices. These results thus provided a prior knowledge of the data-driven methods and can be helpful for future studies on the remote sensing of leaf biochemical constituents.


2007 ◽  
Vol 99 (5) ◽  
pp. 955-958 ◽  
Author(s):  
M. V. Vaieretti ◽  
S. Diaz ◽  
D. Vile ◽  
E. Garnier

2020 ◽  
Vol 108 (6) ◽  
pp. 2336-2351 ◽  
Author(s):  
Dana M. Blumenthal ◽  
Kevin E. Mueller ◽  
Julie A. Kray ◽  
Troy W. Ocheltree ◽  
David J. Augustine ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document