scholarly journals Distinguishing Photosynthetic and Non-Photosynthetic Vegetation: How Do Traditional Observations and Spectral Classification Compare?

2019 ◽  
Vol 11 (21) ◽  
pp. 2589 ◽  
Author(s):  
Claire Fisk ◽  
Kenneth Clarke ◽  
Steven Delean ◽  
Megan Lewis

Remotely sensed ground cover maps are routinely validated using field data collected by observers who classify ground cover into defined categories such as photosynthetic vegetation (PV), non-photosynthetic vegetation (NPV), bare soil (BS), and rock. There is an element of subjectivity to the classification of PV and NPV, and classifications may differ between observers. An alternative is to estimate ground cover based on in situ hyperspectral reflectance measurements (HRM). This study examines observer consistency when classifying vegetation samples of wheat (Triticum aestivum var. Gladius) covering the full range of photosynthetic activity, from completely senesced (0% PV) to completely green (100% PV), as photosynthetic or non-photosynthetic. We also examine how the classification of spectra of the same vegetation samples compares to the observer results. We collected HRM and photographs, over two months, to capture the transition of wheat leaves from 100% PV to 100% NPV. To simulate typical field methodology, observers viewed the photographs and classified each leaf as either PV or NPV, while spectral unmixing was used to decompose the HRM of the leaves into proportions of PV and NPV. The results showed that when a leaf was ≤25% or ≥75% PV observers tended to agree, and assign the leaf to the expected category. However, as leaves transitioned from PV to NPV (i.e., PV ≥ 25% but ≤ 75%) observers’ decisions differed more widely and their classifications showed little agreement with the spectral proportions of PV and NPV. This has significant implications for the reliability of data collected using binary methods in areas containing a significant proportion of vegetation in this intermediate range such as the over/underestimation of PV and NPV vegetation and how reliably this data can then be used to validate remotely sensed products.

Proceedings ◽  
2018 ◽  
Vol 2 (7) ◽  
pp. 328 ◽  
Author(s):  
Eleftheria Mylona ◽  
Vassiliki Daskalopoulou ◽  
Olga Sykioti ◽  
Konstantinos Koutroumbas ◽  
Athanasios Rontogiannis

This paper deals with (both supervised and unsupervised) classification of multispectral Sentinel-2 images, utilizing the abundance representation of the pixels of interest. The latter pixel representation uncovers the hidden structured regions that are not often available in the reference maps. Additionally, it encourages class distinctions and bolsters accuracy. The adopted methodology, which has been successfully applied to hyperpsectral data, involves two main stages: (I) the determination of the pixel’s abundance representation; and (II) the employment of a classification algorithm applied to the abundance representations. More specifically, stage (I) incorporates two key processes, namely (a) endmember extraction, utilizing spectrally homogeneous regions of interest (ROIs); and (b) spectral unmixing, which hinges upon the endmember selection. The adopted spectral unmixing process assumes the linear mixing model (LMM), where each pixel is expressed as a linear combination of the endmembers. The pixel’s abundance vector is estimated via a variational Bayes algorithm that is based on a suitably defined hierarchical Bayesian model. The resulting abundance vectors are then fed to stage (II), where two off-the-shelf supervised classification approaches (namely nearest neighbor (NN) classification and support vector machines (SVM)), as well as an unsupervised classification process (namely the online adaptive possibilistic c-means (OAPCM) clustering algorithm), are adopted. Experiments are performed on a Sentinel-2 image acquired for a specific region of the Northern Pindos National Park in north-western Greece containing water, vegetation and bare soil areas. The experimental results demonstrate that the ad-hoc classification approaches utilizing abundance representations of the pixels outperform those utilizing the spectral signatures of the pixels in terms of accuracy.


2013 ◽  
Vol 101 (3) ◽  
pp. 593-608 ◽  
Author(s):  
Melba M. Crawford ◽  
Devis Tuia ◽  
Hsiuhan Lexie Yang

2021 ◽  
Author(s):  
Roberto Salzano ◽  
Christian Lanconelli ◽  
Giulio Esposito ◽  
Marco Giusto ◽  
Mauro Montagnoli ◽  
...  

<p><span>Polar areas are the most sensitive targets of </span><span>the </span><span>climate change and the continuous monitoring of the cryosphere represents a critical issue. The satellite remote sensing can fill this gap but further integration between remotely-sensed multi-spectral images and field data is crucial to validate retrieval algorithms and climatological models. The optical behaviour of snow, at different wavelengths, provides significant information about the micro-physical characteristics of the surface and this allow to discriminate different snow/ice covers. The aim of this work is to present an approach based on combining unmanned observations on spectral albedo and on the analysis of time-lapse images of sky and ground conditions in a</span><span>n </span><span>Ar</span><span>c</span><span>tic </span><span>test-site </span><span>(Svalbard, Norway). Terrestrial photography can provide, in fact, important information about the cloud cover and support the discrimination between white-sky or clear-sky illuminating conditions. Similarly, time-lapse cameras can provide a detailed description of the snow cover, estimating the fractional snow cover area. The spectral albedo was obtained by a narrow band device that was compared to a full-range commercial system and to remotely sensed data acquired during the 2015 spring/summer period at the </span><span>Amundsen - Nobile</span><span> Climate Change Tower (Ny </span><span>Å</span><span>lesund). The results confirmed the possibility to have continuous observations of the snow surface (microphisical) characteristics and highlighted the opportunity to monitor the spectral variations of snowed surfaces during the melting period. It was possible, </span><span>therefore,</span><span> to estimate spectral indexes, such as NDSI and SWIR albedo, and to found interesting links between both features and air/ground temperatures, wind-speed and precipitations. Different melting phases were detected and different processes were associated with the observed spectral variations.</span></p>


1995 ◽  
Vol 9 (3) ◽  
pp. 477-483 ◽  
Author(s):  
Hubert W. Carson ◽  
Lawrence W. Lass ◽  
Robert H. Callihan

Yellow hawkweed infests permanent upland pastures and forest meadows in northern Idaho. Conventional surveys to determine infestations of this weed are not practical. A charge coupled device with spectral filters mounted in an airplane was used to obtain digital images (1 m resolution) of flowering yellow hawkweed. Supervised classification of the digital images predicted more area infested by yellow hawkweed than did unsupervised classification. Where yellow hawkweed was the dominant ground cover species, infestations were detectable with high accuracy from digital images. Moderate yellow hawkweed infestation detection was unreliable, and areas having less than 20% yellow hawkweed cover were not detected.


Sign in / Sign up

Export Citation Format

Share Document