scholarly journals The 2014 Mw 6.1 Ludian Earthquake: The Application of RADARSAT-2 SAR Interferometry and GPS for this Conjugated Ruptured Event

2019 ◽  
Vol 12 (1) ◽  
pp. 99
Author(s):  
Yufen Niu ◽  
Shuai Wang ◽  
Wu Zhu ◽  
Qin Zhang ◽  
Zhong Lu ◽  
...  

Although the Zhaotong–Ludian fault is a seismically active zone located in the boundary between the Sichuan–Yunnan block and the South China block, it has not experienced a large earthquake greater than Mw 7 since at least 1700. On 3 August, 2014, an Mw 6.1 earthquake (the Ludian earthquake) ruptured the Zhaotong active belt in Ludian County, Yunnan province, China. This earthquake was the largest earthquake recorded in the region since 2000, and it provides us with a unique opportunity to study the active tectonics in the region. The analysis of the aftershocks showed that two conjugate faults could have been involved in the event. We first used Global Positioning System (GPS) data and C-band RADARSAT-2 imagery to map the coseismic surface deformation. We then inverted the derived coseismic deformation for the slip distribution based on the constructed conjugate fault model. Finally, the coulomb failure stress due to the Ludian earthquake was estimated to investigate the potential seismic hazards in this region. Our investigations showed that the Ludian earthquake was mainly a bilateral rupture event. The major slip of the main shock was located at depths of 0–5 km, which is close but does not superpose with the aftershocks that are mostly located at depths of 5–20 km. Interestingly, the seismic moment released by the aftershocks (6.9 × 1018 N∙m) was greater than that of the main shock (2.6 × 1018 N∙m). This evidence suggests that the accumulated elastic strain at depths of 0–20 km could have been fully released by the Ludian earthquake and its subsequent aftershocks. Furthermore, our analysis of the coulomb failure stress changes due to the main shock showed that the aftershocks could be the result of dynamic triggering rather than static triggering.

2007 ◽  
Vol 50 (4) ◽  
pp. 963-974 ◽  
Author(s):  
Xiao-Ping WU ◽  
Hong FU ◽  
Bouchon MICHAEL ◽  
Jia-Fu HU ◽  
Yi-Li HU ◽  
...  

2020 ◽  
Vol 224 (2) ◽  
pp. 909-922
Author(s):  
Ying-Hui Yang ◽  
Jyr-Ching Hu ◽  
Qiang Chen ◽  
Xinglin Lei ◽  
Jingjing Zhao ◽  
...  

SUMMARY An earthquake with a magnitude of Ms 6.0 and shallow focal depth of ∼4 km struck the Changning county, Sichuan province, China on 2019 June 17. The hypocentre is located in the fold-and-thrust belt with plentiful shale gas and salt mine resources. One hypothesis is that the shallow fault could be affected by the artificial pressure water injection including the disposal of wastewater, fracking shale gas extraction and salt mining in Changning area. In this study, SAR (Synthetic Aperture Radar) images, historical earthquakes, aftershocks and seismic reflection data were collected to jointly investigate the characteristics of the 2019 Changning earthquake. The source model inferred from the InSAR coseismic deformation observation reveals that the 2019 Changning earthquake is attributed to a blind fault dipping to southwest with dominant thrust and sinistral strike slip. Moreover, a small shallow fault developing within the Changning anticline was triggered by the main shock, which contributed to the surface displacements as observed in the north of the epicentre. The estimated maximum slip of 0.49 m is located at the depth of ∼1.9 km, ∼9 km northwest of the epicentre. The Coulomb failure stress change caused by the previous two large earthquakes, which occurred in the hydraulic fracturing area, suggesting that they have little effect on the initial rupture of the 2019 Changning earthquake. Despite this, they have a positive triggering effect on the fault rupture in the northwest of the seismogenic fault. In addition, the analysis on the relation between the positive Coulomb failure stress change and the aftershocks suggests that the aftershocks may have different motion patterns from the main shock. The analysis also shows the earthquakes occurrence in the seismogenic zone may be affected by the high pore pressure due to the long-term injection of salt mining for more than three decades.


2020 ◽  
Vol 91 (3) ◽  
pp. 1606-1616
Author(s):  
Neng Xiong ◽  
Fenglin Niu ◽  
Rongjiang Wang

Abstract We computed the stress-change tensor around the 2015 Mw 7.8 Gorkha earthquake with two different rupture models: a simple uniformly dipping model and a complex ramp-flat-ramp-flat fault-slip model. In general, the Coulomb failure stress changes (ΔCFS) computed on the optimally orientated faults based on a ramp-flat-ramp-flat fault-slip model showed the best spatial correlation with the aftershock seismicity. This close relationship was further verified by the focal mechanism solutions of 17 intermediate-size aftershocks. The ΔCFS calculated from the known focal mechanisms of most events were close to the values computed from the optimal fault planes and slip directions using the complex slip model with a nonplanar rupture along the Main Himalaya thrust. We further computed the stress accumulation in the seismic gap regions located around the Gorkha earthquake and between the 1505 and 1934 Mw 8+ historical earthquakes. We found a significant increase of the Coulomb failure stress by 0.2–0.5 MPa caused by the three earthquakes, especially at the shallow ramp of the seismic gap, which indicates an enhanced seismic risk around the Kathmandu area.


2020 ◽  
Vol 224 (1) ◽  
pp. 416-434
Author(s):  
Dezheng Zhao ◽  
Chunyan Qu ◽  
Xinjian Shan ◽  
Roland Bürgmann ◽  
Wenyu Gong ◽  
...  

SUMMARY We investigate the coseismic and post-seismic deformation due to the 6 February 2018 Mw 6.4 Hualien earthquake to gain improved insights into the fault geometries and complex regional tectonics in this structural transition zone. We generate coseismic deformation fields using ascending and descending Sentinel-1A/B InSAR data and GPS data. Analysis of the aftershocks and InSAR measurements reveal complex multifault rupture during this event. We compare two fault model joint inversions of SAR, GPS and teleseismic body waves data to illuminate the involved seismogenic faults, coseismic slip distributions and rupture processes. Our preferred fault model suggests that both well-known active faults, the dominantly left-lateral Milun and Lingding faults, and previously unrecognized oblique-reverse west-dipping and north-dipping detachment faults, ruptured during this event. The maximum slip of ∼1.6 m occurred on the Milun fault at a depth of ∼2–5 km. We compute post-seismic displacement time series using the persistent scatterer method. The post-seismic range-change fields reveal large surface displacements mainly in the near-field of the Milun fault. Kinematic inversions constrained by cumulative InSAR displacements along two tracks indicate that the afterslip occurred on the Milun and Lingding faults and the west-dipping fault just to the east. The maximum cumulative afterslip of 0.4–0.6 m occurred along the Milun fault within ∼7 months of the main shock. The main shock-induced static Coulomb stress changes may have played an important role in driving the afterslip adjacent to coseismic high-slip zones on the Milun, Lingding and west-dipping faults.


2021 ◽  
Author(s):  
Shubham Sharma ◽  
Sebastian Hainzl ◽  
Gert Zöller ◽  
Matthias Holschneider

<p>The Coulomb failure stress (CFS) criterion is the most commonly used method for predicting spatial distributions of aftershocks following large earthquakes. However, large uncertainties are always associated with the calculation of Coulomb stress change. The uncertainties mainly arise due to nonunique slip inversions and unknown receiver faults; especially for the latter, results are highly dependent on the choice of the assumed receiver mechanism. Based on binary tests (aftershocks yes/no), recent studies suggest that alternative stress quantities, a distance‐slip probabilistic model as well as deep neural network (DNN) approaches, all are superior to CFS with predefined receiver mechanism. To challenge this conclusion, which might have large implications, we use 289 slip inversions from SRCMOD database to calculate more realistic CFS values for a layered half‐space and variable receiver mechanisms. We also analyze the effect of the magnitude cutoff, grid size variation, and aftershock duration to verify the use of receiver operating characteristic (ROC) analysis for the ranking of stress metrics. The observations suggest that introducing a layered half‐space does not improve the stress maps and ROC curves. However, results significantly improve for larger aftershocks and shorter time periods but without changing the ranking. We also go beyond binary testing and apply alternative statistics to test the ability to estimate aftershock numbers, which confirm that simple stress metrics perform better than the classic Coulomb failure stress calculations and are also better than the distance‐slip probabilistic model.</p>


Sign in / Sign up

Export Citation Format

Share Document