scholarly journals Harmonization of Landsat and Sentinel 2 for Crop Monitoring in Drought Prone Areas: Case Studies of Ninh Thuan (Vietnam) and Bekaa (Lebanon)

2020 ◽  
Vol 12 (2) ◽  
pp. 281 ◽  
Author(s):  
Minh Nguyen ◽  
Oscar Baez-Villanueva ◽  
Duong Bui ◽  
Phong Nguyen ◽  
Lars Ribbe

Proper satellite-based crop monitoring applications at the farm-level often require near-daily imagery at medium to high spatial resolution. The combination of data from different ongoing satellite missions Sentinel 2 (ESA) and Landsat 7/8 (NASA) provides this unprecedented opportunity at a global scale; however, this is rarely implemented because these procedures are data demanding and computationally intensive. This study developed a robust stream processing for the harmonization of Landsat 7, Landsat 8 and Sentinel 2 in the Google Earth Engine cloud platform, connecting the benefit of coherent data structure, built-in functions and computational power in the Google Cloud. The harmonized surface reflectance images were generated for two agricultural schemes in Bekaa (Lebanon) and Ninh Thuan (Vietnam) during 2018–2019. We evaluated the performance of several pre-processing steps needed for the harmonization including the image co-registration, Bidirectional Reflectance Distribution Functions correction, topographic correction, and band adjustment. We found that the misregistration between Landsat 8 and Sentinel 2 images varied from 10 m in Ninh Thuan (Vietnam) to 32 m in Bekaa (Lebanon), and posed a great impact on the quality of the final harmonized data set if not treated. Analysis of a pair of overlapped L8-S2 images over the Bekaa region showed that, after the harmonization, all band-to-band spatial correlations were greatly improved. Finally, we demonstrated an application of the dense harmonized data set for crop mapping and monitoring. An harmonic (Fourier) analysis was applied to fit the detected unimodal, bimodal and trimodal shapes in the temporal NDVI patterns during one crop year in Ninh Thuan province. The derived phase and amplitude values of the crop cycles were combined with max-NDVI as an R-G-B false composite image. The final image was able to highlight croplands in bright colors (high phase and amplitude), while the non-crop areas were shown with grey/dark (low phase and amplitude). The harmonized data sets (with 30 m spatial resolution) along with the Google Earth Engine scripts used are provided for public use.

2020 ◽  
Vol 12 (19) ◽  
pp. 3232
Author(s):  
Nicola Genzano ◽  
Nicola Pergola ◽  
Francesco Marchese

Several satellite-based systems have been developed over the years to study and monitor thermal volcanic activity. Most of them use high temporal resolution satellite data, provided by sensors like the Moderate Resolution Imaging Spectroradiometer (MODIS) that if on the one hand guarantee a continuous monitoring of active volcanic areas on the other hand are less suited to map thermal anomalies, and to provide accurate information about their features. The Multispectral Instrument (MSI) and the Operational Land Imager (OLI), respectively, onboard the Sentinel-2 and Landsat-8 satellites, providing Short-Wave Infrared (SWIR) data at 20 m (MSI) and 30 m (OLI) spatial resolution, may make an important contribution in this area. In this work, we present the first Google Earth Engine (GEE) App to investigate, map and monitor volcanic thermal anomalies at global scale, integrating Landsat-8 OLI and Sentinel-2 MSI observations. This open tool, which implements the Normalized Hot spot Indices (NHI) algorithm, enables the analysis of more than 1400 active volcanoes, with very low processing times, thanks to the high GEE computational resources. Performance and limitations of the tool, such as its next upgrades, aiming at increasing the user-friendly experience and extending the temporal range of data analyses, are analyzed and discussed.


2018 ◽  
Vol 10 (8) ◽  
pp. 1227 ◽  
Author(s):  
Dimosthenis Traganos ◽  
Bharat Aggarwal ◽  
Dimitris Poursanidis ◽  
Konstantinos Topouzelis ◽  
Nektarios Chrysoulakis ◽  
...  

Seagrasses are traversing the epoch of intense anthropogenic impacts that significantly decrease their coverage and invaluable ecosystem services, necessitating accurate and adaptable, global-scale mapping and monitoring solutions. Here, we combine the cloud computing power of Google Earth Engine with the freely available Copernicus Sentinel-2 multispectral image archive, image composition, and machine learning approaches to develop a methodological workflow for large-scale, high spatiotemporal mapping and monitoring of seagrass habitats. The present workflow can be easily tuned to space, time and data input; here, we show its potential, mapping 2510.1 km2 of P. oceanica seagrasses in an area of 40,951 km2 between 0 and 40 m of depth in the Aegean and Ionian Seas (Greek territorial waters) after applying support vector machines to a composite of 1045 Sentinel-2 tiles at 10-m resolution. The overall accuracy of P. oceanica seagrass habitats features an overall accuracy of 72% following validation by an independent field data set to reduce bias. We envision that the introduced flexible, time- and cost-efficient cloud-based chain will provide the crucial seasonal to interannual baseline mapping and monitoring of seagrass ecosystems in global scale, resolving gain and loss trends and assisting coastal conservation, management planning, and ultimately climate change mitigation.


Author(s):  
Minh D. Nguyen ◽  
Oscar B. Villanueva ◽  
Duong D. Bui ◽  
Phong T. Nguyen ◽  
Lars Ribbe

Proper satellite-based crop monitoring applications at the farm-level often require near-daily imagery at medium to high spatial resolution. The synthesizing of ongoing satellite missions by ESA (Sentinel 2) and NASA (Landsat7/8) provides this unprecedented opportunity at a global scale; nonetheless, this is rarely implemented because these procedures are data demanding and computationally intensive. This study developed a complete stream processing in the Google Earth Engine cloud platform to generate harmonized surface reflectance images of Landsat7,8 and Sentinel 2 missions. The harmonized images were generated for two agriculture schemes in Bekaa (Lebanon) and Ninh Thuan (Vietnam) during the period 2018-2019. We evaluated the performance of several pre-processing steps needed for the harmonization including image co-registration, brdf correction, topographic correction, and band adjustment. This study found that the miss-registration between Landsat 8 and Sentinel 2 images, varied from 10 meters in Ninh Thuan, Vietnam to 32 meters in Bekaa, Lebanon, and if not treated, posed a great impact on the quality of the harmonized dataset. Analysis of a pair overlapped L8-S2 images over the Bekaa region showed that after the harmonization, all band-to-band spatial correlations were greatly improved from (0.57, 0.64, 0.67, 0.75, 0.76, 0.75, 0.79) to (0.87, 0.91, 0.92, 0.94, 0.97, 0.97, 0.96) in bands (blue, green, red, nir,swir1,swir2, ndvi) respectively. We demonstrated that dense observation of the harmonized dataset can be very helpful for characterizing cropland in highly dynamic areas. We detected unimodal, bimodal and trimodal shapes in the temporal NDVI patterns (likely cycles of paddy rice) in Ninh Thuan province only during the year 2018. We fitted the temporal signatures of the NDVI time series using harmonic (Fourier) analysis. Derived phase (angle from the starting point to the cycle's peak) and amplitude (the cycle's height) were combined with max-NDVI to generate an R-G-B image. This image highlighted croplands as colored pixels (high phase and amplitude) and other types of land as grey/dark pixels (low phase/amplitude). Generated harmonized datasets that contain surface reflectance images (bands blue, green, red, nir, swir1, swir2, and ndvi at 30 meters) over the two studied sites are provided for public usage and testing.


2020 ◽  
Author(s):  
Nicola Genzano ◽  
Francesco Marchese ◽  
Alfredo Falconieri ◽  
Giuseppe Mazzeo ◽  
Nicola Pergola

<p>NHI (Normalized Hotspot Indices) is an original multichannel algorithm recently developed for mapping volcanic thermal anomalies in daylight conditions by means of infrared Sentinel 2 MSI and Landsat 8 OLI data. The algorithm, which uses two normalized indices analyzing SWIR (Shortwave Infrared) and NIR (Near Infrared) radiances, was tested with success in different volcanic areas, assessing results by means of independent ground and satellite-based observations.</p><p>Here we present and describe the NHI-based tool, which exploits the high computation capabilities of Google Earth Engine to perform the rapid mapping of hot volcanic features at a global scale. The tool allows the users to retrieve information also about changes of thermal volcanic activity, giving the opportunity of performing time series analysis of hotspot pixel number and total SWIR radiance. Advantages of using the NHI tool as a complement to current satellite-based volcanoes monitoring systems are then analysed and discussed, such as its future upgrades.</p>


2020 ◽  
Author(s):  
Luojia Hu ◽  
Wei Yao ◽  
Zhitong Yu ◽  
Lei Wang

<p>Mangrove forest is considered as one of the pivotal ecosystems to near-shore environment health, adjacent terrestrial ecosystems and even global climate change migration. However, for past two decades, they are declining rapidly. In order to take effective steps to prevent the extinction of mangroves, high spatial resolution information of large-scale mangrove distribution is urgent. Recent study has indicated that a suitable pixel size for extracting mangroves should be at least equal to 10 m. Hence, Sentinel imagery (Sentinel-1 C-band synthetic aperture radar (SAR) and Sentinel-2 Multi-Spectral Instrument (MSI) imagery) whose spatial resolution is 10 m may hold great potentials to achieve this goal, but there are limited researches investigating it. Therefore, in this study, we will explore the potential of Sentinel imagery to extract mangrove forests in China on the Google Earth Engine platform. Specifically, our study was mainly conducted around 3 questions: (1) Which Sentinel imagery provides a higher accuracy for mangrove forest mapping, Sentinel-1 SAR data or Sentinel-2 multi-spectral data? (2) which combination of features from Sentinel imagery provides the most accurate mangrove forest map? (3) Compared to 30-m resolution mangrove products derived from Landsat imagery, how does 10-m resolution map improve our knowledge about the distribution of mangrove forest in China?</p><p> </p><p>Our results show that: (1) The highest producer’s accuracies (the reason why using producer’s accuracy as an accuracy evaluation indicator here is that the omission errors in mangrove forest extent map are much larger than commission errors) of mangrove forest maps derived from Sentinel-1 and Sentinel-2 imagery are 91.76% and 90.39%, respectively, which means that the contributions of Sentinel-1 SAR and Sentinel-2 MSI imagery to mangrove mapping are similar; (2) The highest producer’s accuracy of mangrove forest map at 10-m resolution is 95.4%. The mangrove forest map with the highest accuracy is obtained by combining quantiles of spectral and backscatter bands, spectral index, and texture index derived from time series of Sentinel-1 and Sentinel-2 imagery, indicating that the combination of Sentinel-1 SAR and Sentinel-2 MSI imagery is more useful in mangrove forest mapping than using them separately; (3) In China, the total area of mangrove forest extent at 10-m resolution is similar to that at 30-m resolution (20003 ha vs. 19220 ha). However, compared to 30-m resolution mangrove products, the 10-m resolution mangrove map identifies 1741 ha (occupying 8.7% of total mangrove forest area in China) mangrove forests in size smaller than 1 ha, which are especially important to low-lying coastal zone. This study demonstrates the feasibility of Sentinel imagery in large-scale mangrove forest mapping and gives guidance to map global mangrove forest at 10-m resolution in the future.  </p><p> </p>


2021 ◽  
Vol 3 ◽  
Author(s):  
Seth Peterson ◽  
Greg Husak

Agriculture in sub-Saharan Africa consists primarily of smallholder farms of rainfed crops. Historically, satellite data were too coarse to account for the heterogeneity in these landscapes. Sentinel-2 data have improved spectral resolution and much higher spatial resolution (10 m) than previously available satellites with global coverage, such as Landsat or MODIS, making mapping smallholder farms possible. Spectral mixture analysis was used to convert the Sentinel-2 signal into fractions of green vegetation, non-photosynthetic vegetation, soil, and shade endmembers. Very high spatial resolution imagery in Google Earth Pro was used to identify locations of crop and natural vegetation classes, with over 20,000 reference points interpreted. The high temporal resolution of Sentinel-2 (5 days repeat) allows for classification of landcover based on the phenological signal, with natural areas having smoothly varying amounts of photosynthetic vegetation annually, while cropped areas show more abrupt changes, and also the presence of bare soil due to agricultural activity at some point during the year. We summarized the endmember values using monthly medians, extracted values for the reference data points, randomly split them into training and test data sets, and input the training data into the random forests algorithm in Google Earth Engine to map crop area. We divided southern and central Malawi into tiles, and found crop/no crop classification accuracies on the test data for each tile to be between 87 and 93%. The 10 m map of crop area was aggregated to the district level and showed an R2 of 0.74 with ground-based statistics from the Malawi government and 0.79 with a remotely sensed product developed by the USGS.


2017 ◽  
Vol 9 (10) ◽  
pp. 1065 ◽  
Author(s):  
Jun Xiong ◽  
Prasad Thenkabail ◽  
James Tilton ◽  
Murali Gumma ◽  
Pardhasaradhi Teluguntla ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document