scholarly journals Harmonization of Landsat and Sentinel 2 for Crop Monitoring in Drought Prone Areas: Case Studies of Ninh Thuan (Vietnam) and Bekaa (Lebanon)

Author(s):  
Minh D. Nguyen ◽  
Oscar B. Villanueva ◽  
Duong D. Bui ◽  
Phong T. Nguyen ◽  
Lars Ribbe

Proper satellite-based crop monitoring applications at the farm-level often require near-daily imagery at medium to high spatial resolution. The synthesizing of ongoing satellite missions by ESA (Sentinel 2) and NASA (Landsat7/8) provides this unprecedented opportunity at a global scale; nonetheless, this is rarely implemented because these procedures are data demanding and computationally intensive. This study developed a complete stream processing in the Google Earth Engine cloud platform to generate harmonized surface reflectance images of Landsat7,8 and Sentinel 2 missions. The harmonized images were generated for two agriculture schemes in Bekaa (Lebanon) and Ninh Thuan (Vietnam) during the period 2018-2019. We evaluated the performance of several pre-processing steps needed for the harmonization including image co-registration, brdf correction, topographic correction, and band adjustment. This study found that the miss-registration between Landsat 8 and Sentinel 2 images, varied from 10 meters in Ninh Thuan, Vietnam to 32 meters in Bekaa, Lebanon, and if not treated, posed a great impact on the quality of the harmonized dataset. Analysis of a pair overlapped L8-S2 images over the Bekaa region showed that after the harmonization, all band-to-band spatial correlations were greatly improved from (0.57, 0.64, 0.67, 0.75, 0.76, 0.75, 0.79) to (0.87, 0.91, 0.92, 0.94, 0.97, 0.97, 0.96) in bands (blue, green, red, nir,swir1,swir2, ndvi) respectively. We demonstrated that dense observation of the harmonized dataset can be very helpful for characterizing cropland in highly dynamic areas. We detected unimodal, bimodal and trimodal shapes in the temporal NDVI patterns (likely cycles of paddy rice) in Ninh Thuan province only during the year 2018. We fitted the temporal signatures of the NDVI time series using harmonic (Fourier) analysis. Derived phase (angle from the starting point to the cycle's peak) and amplitude (the cycle's height) were combined with max-NDVI to generate an R-G-B image. This image highlighted croplands as colored pixels (high phase and amplitude) and other types of land as grey/dark pixels (low phase/amplitude). Generated harmonized datasets that contain surface reflectance images (bands blue, green, red, nir, swir1, swir2, and ndvi at 30 meters) over the two studied sites are provided for public usage and testing.

2020 ◽  
Vol 12 (2) ◽  
pp. 281 ◽  
Author(s):  
Minh Nguyen ◽  
Oscar Baez-Villanueva ◽  
Duong Bui ◽  
Phong Nguyen ◽  
Lars Ribbe

Proper satellite-based crop monitoring applications at the farm-level often require near-daily imagery at medium to high spatial resolution. The combination of data from different ongoing satellite missions Sentinel 2 (ESA) and Landsat 7/8 (NASA) provides this unprecedented opportunity at a global scale; however, this is rarely implemented because these procedures are data demanding and computationally intensive. This study developed a robust stream processing for the harmonization of Landsat 7, Landsat 8 and Sentinel 2 in the Google Earth Engine cloud platform, connecting the benefit of coherent data structure, built-in functions and computational power in the Google Cloud. The harmonized surface reflectance images were generated for two agricultural schemes in Bekaa (Lebanon) and Ninh Thuan (Vietnam) during 2018–2019. We evaluated the performance of several pre-processing steps needed for the harmonization including the image co-registration, Bidirectional Reflectance Distribution Functions correction, topographic correction, and band adjustment. We found that the misregistration between Landsat 8 and Sentinel 2 images varied from 10 m in Ninh Thuan (Vietnam) to 32 m in Bekaa (Lebanon), and posed a great impact on the quality of the final harmonized data set if not treated. Analysis of a pair of overlapped L8-S2 images over the Bekaa region showed that, after the harmonization, all band-to-band spatial correlations were greatly improved. Finally, we demonstrated an application of the dense harmonized data set for crop mapping and monitoring. An harmonic (Fourier) analysis was applied to fit the detected unimodal, bimodal and trimodal shapes in the temporal NDVI patterns during one crop year in Ninh Thuan province. The derived phase and amplitude values of the crop cycles were combined with max-NDVI as an R-G-B false composite image. The final image was able to highlight croplands in bright colors (high phase and amplitude), while the non-crop areas were shown with grey/dark (low phase and amplitude). The harmonized data sets (with 30 m spatial resolution) along with the Google Earth Engine scripts used are provided for public use.


2020 ◽  
Vol 12 (19) ◽  
pp. 3232
Author(s):  
Nicola Genzano ◽  
Nicola Pergola ◽  
Francesco Marchese

Several satellite-based systems have been developed over the years to study and monitor thermal volcanic activity. Most of them use high temporal resolution satellite data, provided by sensors like the Moderate Resolution Imaging Spectroradiometer (MODIS) that if on the one hand guarantee a continuous monitoring of active volcanic areas on the other hand are less suited to map thermal anomalies, and to provide accurate information about their features. The Multispectral Instrument (MSI) and the Operational Land Imager (OLI), respectively, onboard the Sentinel-2 and Landsat-8 satellites, providing Short-Wave Infrared (SWIR) data at 20 m (MSI) and 30 m (OLI) spatial resolution, may make an important contribution in this area. In this work, we present the first Google Earth Engine (GEE) App to investigate, map and monitor volcanic thermal anomalies at global scale, integrating Landsat-8 OLI and Sentinel-2 MSI observations. This open tool, which implements the Normalized Hot spot Indices (NHI) algorithm, enables the analysis of more than 1400 active volcanoes, with very low processing times, thanks to the high GEE computational resources. Performance and limitations of the tool, such as its next upgrades, aiming at increasing the user-friendly experience and extending the temporal range of data analyses, are analyzed and discussed.


2021 ◽  
Author(s):  
Hongye Cao ◽  
Ling Han ◽  
Liangzhi Li

Abstract Remote sensing dynamic monitoring methods often benefit from a dense time series of observations. To enhance these time series, it is sometimes necessary to integrate data from multiple satellite systems. For more than 40 years, Landsat has provided the longest time record of space-based land surface observations, and the successful launch of the Landsat-8 Operational Land Imager (OLI) sensor in 2013 continues this tradition. However, the 16-day observation period of Landsat images has challenged the ability to measure subtle and transient changes like never before. The European Space Agency (ESA) launched the Sentinel-2A satellite in 2015. The satellite carries a Multispectral Instrument (MSI) sensor that provides a 10-20m spatial resolution data source providing an opportunity to complement the Landsat data record. The collection of Sentinel-2A MSI, Landsat-7 ETM+, and Landsat-8 OLI data provide multispectral global coverage from 10m to 30m with further reduced data revisit intervals. There are many differences between sensor data that need to be taken into account to use these data together reliably. The purpose of this study is to evaluate the potential of integrating surface reflectance data from Landsat-7, Landsat-8 and Sentinel-2 archived in the Google Earth Engine (GEE) cloud platform. To test and quantify the differences between these sensors, hundreds of thousands of surface reflectance data from sensor pairs were collected over China. In this study, some differences in the surface reflectance of the sensor pairs were identified, based upon which a cross-sensor conversion model was proposed, i.e., a suitable adjustment equation was fitted using an ordinary least squares (OLS) linear regression method to convert the Sentinel-2 reflectance values closer to the Landsat-7 or Landsat-8 values. The regression results show that the Sentinel MSI data are spectrally comparable to both types of Landsat image data, just as the Landsat sensors are comparable to each other. The root mean square error (RMSE) values between MSI and Landsat spectral values before coordinating the sensors ranged from 0.014 to 0.037, and the RMSE values between OLI and ETM + ranged from 0.019 to 0.039. After coordination, RMSE values between MSI and Landsat spectral values ranged from 0.011 to 0.026, and RMSD values between OLI and ETM + ranged from 0.013 to 0.034. The fitted adjustment equations were also compared to the HLS (Harmonized Landsat-8 Sentinel-2) global fitted equations (Sentinel-2 to Landsat-8) published by the National Aeronautics and Space Administration (NASA) and were found to be significantly different, increasing the likelihood that such adjustments would need to be fitted on a regional basis. This study believes that despite the differences in these datasets, it appears feasible to integrate these datasets by applying a linear regression correction between the bands.


2020 ◽  
Author(s):  
Nicola Genzano ◽  
Francesco Marchese ◽  
Alfredo Falconieri ◽  
Giuseppe Mazzeo ◽  
Nicola Pergola

<p>NHI (Normalized Hotspot Indices) is an original multichannel algorithm recently developed for mapping volcanic thermal anomalies in daylight conditions by means of infrared Sentinel 2 MSI and Landsat 8 OLI data. The algorithm, which uses two normalized indices analyzing SWIR (Shortwave Infrared) and NIR (Near Infrared) radiances, was tested with success in different volcanic areas, assessing results by means of independent ground and satellite-based observations.</p><p>Here we present and describe the NHI-based tool, which exploits the high computation capabilities of Google Earth Engine to perform the rapid mapping of hot volcanic features at a global scale. The tool allows the users to retrieve information also about changes of thermal volcanic activity, giving the opportunity of performing time series analysis of hotspot pixel number and total SWIR radiance. Advantages of using the NHI tool as a complement to current satellite-based volcanoes monitoring systems are then analysed and discussed, such as its future upgrades.</p>


2020 ◽  
Vol 12 (12) ◽  
pp. 2015 ◽  
Author(s):  
Manuel Ángel Aguilar ◽  
Rafael Jiménez-Lao ◽  
Abderrahim Nemmaoui ◽  
Fernando José Aguilar ◽  
Dilek Koc-San ◽  
...  

Remote sensing techniques based on medium resolution satellite imagery are being widely applied for mapping plastic covered greenhouses (PCG). This article aims at testing the spectral consistency of surface reflectance values of Sentinel-2 MSI (S2 L2A) and Landsat 8 OLI (L8 L2 and the pansharpened and atmospherically corrected product from L1T product; L8 PANSH) data in PCG areas located in Spain, Morocco, Italy and Turkey. The six corresponding bands of S2 and L8, together with the normalized difference vegetation index (NDVI), were generated through an OBIA approach for each PCG study site. The coefficient of determination (r2) and the root mean square error (RMSE) were computed in sixteen cloud-free simultaneously acquired image pairs from the four study sites to evaluate the coherence between the two sensors. It was found that the S2 and L8 correlation (r2 > 0.840, RMSE < 9.917%) was quite good in most bands and NDVI. However, the correlation of the two sensors fluctuated between study sites, showing occasional sun glint effects on PCG roofs related to the sensor orbit and sun position. Moreover, higher surface reflectance discrepancies between L8 L2 and L8 PANSH data, mainly in the visible bands, were always observed in areas with high-level aerosol values derived from the aerosol quality band included in the L8 L2 product (SR aerosol). In this way, the consistency between L8 PANSH and S2 L2A was improved mainly in high-level aerosol areas according to the SR aerosol band.


2020 ◽  
Vol 9 (4) ◽  
pp. 257 ◽  
Author(s):  
Kiwon Lee ◽  
Kwangseob Kim ◽  
Sun-Gu Lee ◽  
Yongseung Kim

Surface reflectance data obtained by the absolute atmospheric correction of satellite images are useful for land use applications. For Landsat and Sentinel-2 images, many radiometric processing methods exist, and the images are supported by most types of commercial and open-source software. However, multispectral KOMPSAT-3A images with a resolution of 2.2 m are currently lacking tools or open-source resources for obtaining top-of-canopy (TOC) reflectance data. In this study, an atmospheric correction module for KOMPSAT-3A images was newly implemented into the optical calibration algorithm in the Orfeo Toolbox (OTB), with a sensor model and spectral response data for KOMPSAT-3A. Using this module, named OTB extension for KOMPSAT-3A, experiments on the normalized difference vegetation index (NDVI) were conducted based on TOC reflectance data with or without aerosol properties from AERONET. The NDVI results for these atmospherically corrected data were compared with those from the dark object subtraction (DOS) scheme, a relative atmospheric correction method. The NDVI results obtained using TOC reflectance with or without the AERONET data were considerably different from the results obtained from the DOS scheme and the Landsat-8 surface reflectance of the Google Earth Engine (GEE). It was found that the utilization of the aerosol parameter of the AERONET data affects the NDVI results for KOMPSAT-3A images. The TOC reflectance of high-resolution satellite imagery ensures further precise analysis and the detailed interpretation of urban forestry or complex vegetation features.


2020 ◽  
Vol 12 (21) ◽  
pp. 3539
Author(s):  
Haifeng Tian ◽  
Jie Pei ◽  
Jianxi Huang ◽  
Xuecao Li ◽  
Jian Wang ◽  
...  

Garlic and winter wheat are major economic and grain crops in China, and their boundaries have increased substantially in recent decades. Updated and accurate garlic and winter wheat maps are critical for assessing their impacts on society and the environment. Remote sensing imagery can be used to monitor spatial and temporal changes in croplands such as winter wheat and maize. However, to our knowledge, few studies are focusing on garlic area mapping. Here, we proposed a method for coupling active and passive satellite imagery for the identification of both garlic and winter wheat in Northern China. First, we used passive satellite imagery (Sentinel-2 and Landsat-8 images) to extract winter crops (garlic and winter wheat) with high accuracy. Second, we applied active satellite imagery (Sentinel-1 images) to distinguish garlic from winter wheat. Third, we generated a map of the garlic and winter wheat by coupling the above two classification results. For the evaluation of classification, the overall accuracy was 95.97%, with a kappa coefficient of 0.94 by eighteen validation quadrats (3 km by 3 km). The user’s and producer’s accuracies of garlic are 95.83% and 95.85%, respectively; and for the winter wheat, these two accuracies are 97.20% and 97.45%, respectively. This study provides a practical exploration of targeted crop identification in mixed planting areas using multisource remote sensing data.


Sign in / Sign up

Export Citation Format

Share Document