scholarly journals Discriminative Feature Learning Constrained Unsupervised Network for Cloud Detection in Remote Sensing Imagery

2020 ◽  
Vol 12 (3) ◽  
pp. 456
Author(s):  
Weiying Xie ◽  
Jian Yang ◽  
Yunsong Li ◽  
Jie Lei ◽  
Jiaping Zhong ◽  
...  

Cloud detection is a significant preprocessing step for increasing the exploitability of remote sensing imagery that faces various levels of difficulty due to the complexity of underlying surfaces, insufficient training data, and redundant information in high-dimensional data. To solve these problems, we propose an unsupervised network for cloud detection (UNCD) on multispectral (MS) and hyperspectral (HS) remote sensing images. The UNCD method enforces discriminative feature learning to obtain the residual error between the original input and the background in deep latent space, which is based on the observation that clouds are sparse and modeled as sparse outliers in remote sensing imagery. The UNCD enforces discriminative feature learning to obtain the residual error between the original input and the background in deep latent space, which is based on the observation that clouds are sparse and modeled as sparse outliers in remote sensing imagery. First, a compact representation of the original imagery is obtained by a latent adversarial learning constrained encoder. Meanwhile, the majority class with sufficient samples (i.e., background pixels) is more accurately reconstructed than the clouds with limited samples by the decoder. An image discriminator is used to prevent the generalization of out-of-class features caused by latent adversarial learning. To further highlight the background information in the deep latent space, a multivariate Gaussian distribution is introduced. In particular, the residual error with clouds highlighted and background samples suppressed is applied in the cloud detection in deep latent space. To evaluate the performance of the proposed UNCD method, experiments were conducted on both MS and HS datasets that were captured by various sensors over various scenes, and the results demonstrate its state-of-the-art performance. The sensors that captured the datasets include Landsat 8, GaoFen-1 (GF-1), and GaoFen-5 (GF-5). Landsat 8 was launched at Vandenberg Air Force Base in California on 11 February 2013, in a mission that was initially known as the Landsat Data Continuity Mission (LDCM). China launched the GF-1 satellite. The GF-5 satellite captures hyperspectral observations in the Chinese Key Projects of High-Resolution Earth Observation System. The overall accuracy (OA) values for Images I and II from the Landsat 8 dataset were 0.9526 and 0.9536, respectively, and the OA values for Images III and IV from the GF-1 wide field of view (WFV) dataset were 0.9957 and 0.9934, respectively. Hence, the proposed method outperformed the other considered methods.

Author(s):  
Jianhua Guo ◽  
Jingyu Yang ◽  
Huanjing Yue ◽  
Yang Chen ◽  
Chunping Hou ◽  
...  

2021 ◽  
Vol 13 (16) ◽  
pp. 3319
Author(s):  
Nan Ma ◽  
Lin Sun ◽  
Chenghu Zhou ◽  
Yawen He

Automatic cloud detection in remote sensing images is of great significance. Deep-learning-based methods can achieve cloud detection with high accuracy; however, network training heavily relies on a large number of labels. Manually labelling pixel-wise level cloud and non-cloud annotations for many remote sensing images is laborious and requires expert-level knowledge. Different types of satellite images cannot share a set of training data, due to the difference in spectral range and spatial resolution between them. Hence, labelled samples in each upcoming satellite image are required to train a new deep-learning-based model. In order to overcome such a limitation, a novel cloud detection algorithm based on a spectral library and convolutional neural network (CD-SLCNN) was proposed in this paper. In this method, the residual learning and one-dimensional CNN (Res-1D-CNN) was used to accurately capture the spectral information of the pixels based on the prior spectral library, effectively preventing errors due to the uncertainties in thin clouds, broken clouds, and clear-sky pixels during remote sensing interpretation. Benefiting from data simulation, the method is suitable for the cloud detection of different types of multispectral data. A total of 62 Landsat-8 Operational Land Imagers (OLI), 25 Moderate Resolution Imaging Spectroradiometers (MODIS), and 20 Sentinel-2 satellite images acquired at different times and over different types of underlying surfaces, such as a high vegetation coverage, urban area, bare soil, water, and mountains, were used for cloud detection validation and quantitative analysis, and the cloud detection results were compared with the results from the function of the mask, MODIS cloud mask, support vector machine, and random forest. The comparison revealed that the CD-SLCNN method achieved the best performance, with a higher overall accuracy (95.6%, 95.36%, 94.27%) and mean intersection over union (77.82%, 77.94%, 77.23%) on the Landsat-8 OLI, MODIS, and Sentinel-2 data, respectively. The CD-SLCNN algorithm produced consistent results with a more accurate cloud contour on thick, thin, and broken clouds over a diverse underlying surface, and had a stable performance regarding bright surfaces, such as buildings, ice, and snow.


Author(s):  
Yetianjian Wang ◽  
Li Pan ◽  
Dagang Wang ◽  
Yifei Kang

Harbours are very important objects in civil and military fields. To detect them from high resolution remote sensing imagery is important in various fields and also a challenging task. Traditional methods of detecting harbours mainly focus on the segmentation of water and land and the manual selection of knowledge. They do not make enough use of other features of remote sensing imagery and often fail to describe the harbours completely. In order to improve the detection, a new method is proposed. First, the image is transformed to Hue, Saturation, Value (HSV) colour space and saliency analysis is processed via the generation and enhancement of the co-occurrence histogram to help detect and locate the regions of interest (ROIs) that is salient and may be parts of the harbour. Next, SIFT features are extracted and feature learning is processed to help represent the ROIs. Then, by using classified feature of the harbour, a classifier is trained and used to check the ROIs to find whether they belong to the harbour. Finally, if the ROIs belong to the harbour, a minimum bounding rectangle is formed to include all the harbour ROIs and detect and locate the harbour. The experiment on high resolution remote sensing imagery shows that the proposed method performs better than other methods in precision of classifying ROIs and accuracy of completely detecting and locating harbours.


2019 ◽  
Vol 9 (13) ◽  
pp. 2631 ◽  
Author(s):  
Hong Fang ◽  
Yuchun Wei ◽  
Qiuping Dai

The area of urban impervious surfaces is one of the most important indicators for determining the level of urbanisation and the quality of the environment and is rapidly increasing with the acceleration of urbanisation in developing countries. This paper proposes a novel remote sensing index based on the coastal band and normalised difference vegetation index for extracting impervious surface distribution from Landsat 8 multispectral remote sensing imagery. The index was validated using three images covering urban areas of China and was compared with five other typical index methods for the extraction of impervious surface distribution, namely, the normalised difference built-up index, index-based built-up index, normalised difference impervious surface index, normalised difference impervious index, and combinational built-up index. The results showed that the novel index provided higher accuracy and effectively distinguished impervious surfaces from bare soil, and the average values of the recall, precision, and F1 score for the three images were 95%, 91%, and 93%, respectively. The novel index provides better applicability in the extraction of urban impervious surface distribution from Landsat 8 multispectral remote sensing imagery.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Jiahui Li ◽  
Youxin Zhao ◽  
Jiguang Dai ◽  
Hong Zhu

The main objective of this paper was to assess the capability of multisource remote sensing imagery fusion for coastal zone classification. Five scenes of Gaofen- (GF-) 1 optic imagery and four scenes of synthetic aperture radar (SAR) (C-band Sentinel-1 and L-band ALOS-2) imagery were collected and matched. Note that GF-1 is the first satellite of the China high-resolution earth observation system, which acquires multispectral data with decametric spatial resolution, high temporal resolution, and wide coverage. The results showed that based on the comparison of C- and L-band SAR for coastal coverage, it is verified that C band is superior to L band and parameter subsets of σvv0, σvh0, and Dcross can be effectively used for coastal classification. A new fusion method based on the wavelet transform (WT) was also proposed and used for imagery fusion. Statistical values for the mean, entropy, gradient, and correlation coefficient of the proposed method were 67.526, 7.321, 6.440, and 0.955, respectively. We therefore conclude that the result of our proposed method is superior to GF-1 imagery and traditional HIS fusion results. Finally, the classification output was determined along with an assessment of classification accuracy and kappa coefficient. The kappa coefficient and overall accuracy of the classification were 0.8236 and 85.9774%, respectively, so the proposed fusion method had a satisfying performance for coastal coverage mapping.


2017 ◽  
Vol 15 (1) ◽  
pp. 20 ◽  
Author(s):  
Ferad Puturuhu ◽  
Projo Danoedoro ◽  
Junun Sartohadi ◽  
Danang Srihadmoko

ABSTRAKPenginderaa jauh merupakan salah satu metode yang digunakan untuk menjawab permasalahan penelitian tentang teknologi perolehan data spasial dan sekaligus permasalahan kewilayahan serta manajemen sumber daya laha. Pemanfaatan metode penginderaan jauh untuk penelitian landslide dianataranya metode interpretasi citra secara visual dan digital.  Tujuan penelitian ini adalah membandingkan akurasi metode interpretasi dan menentukan lokasi kejadian landslide. Citra yang digunakan dalam penelitian ini adalah citra Landsat 8, Quickbird dan SRTM. Metode yang digunakan untuk menentukan kandidat landslide adalah interpretasi visual berlapis, Interpretasi citra digital dengan NDVI, OBIA, Toposhape, dan kombinasi NDVI-OBIA, dan NDVI-OBIA-Toposhape. Penggunaan metode interpretasi kejadian landslide yang terbaik adalah interpretasi visual berlapis dengan presentase 90 %. Interpretasi digital dengan NDVI mempunyai ketelitian 47 %, OBIA ketelitiannya  45 %, Toposhape 47 %, kombinasi NDVI-OBIA 47 %, dan Kombinasi NDVI-OBIA-Toposhape 53 %. Dari interpretasi visual berlapis dan pengamatan lapangan diperoleh tipe landslide yang ditemukan yaitu nendatan/slump (soil rotational slide) dalam jumlah yang banyak 7 titik (38.9%), rayapan tanah (soil creep),  aliran bahan rombakan (debris flow), longsor translasi dengan material tanah (earths Slide), dan  nendatan majemuk (multiple rotational slide).Kata kunci: Pengembanga, Metode, Interpretasi Citra, Penginderaan Jauh, Kandidat,    Landslide, Paninsula LeitimurABSTRACTRemote sensing is one of the methods used to address the problem of research on spatial data acquisition technologies and is also acquiring the problems of territorial and land resource management. The utilization of remote sensing method for the landslide research is visual and digital imagery interpretation. The purpose of this study was to compare the accuracy of the method of interpretation and determine the location of the landslide event. The imagery that used in this study was Landsat 8, Quickbird and SRTM. The method that used to determine the candidate of landslide was the layered visual interpretation, digital imagery interpretation with NDVI, OBIA, Toposhape, and combination-OBIA NDVI and NDVI-OBIA-Toposhape. The use of the interpretation method for the landslide event is the best of layered-visual interpretation with a percentage of 90%. Digital interpretation with NDVI has a 47% of its accuracy, thoroughness OBIA 45%, Toposhape 47%, the combination of NDVI-OBIA 47%, and the combination of NDVI-OBIA-Toposhape 53%. From  the layered-visual interpretation and field observations were obtained type of landslide found that soil rotational slide in large quantities 7 points (38.9%), creep soil (soil creep), the flow of material destruction (debris flow), landslides translation with soil materials (earths slide) and multiple rotational slide.Keywords: Development, Method, Imagery Interpretation, Remote Sensing, Candidate of Landslide, Landslide and Leitimur JaizirahCitation: Puturuhu, F., Danoedoro, P., Sartohadi, J. and Srihadmoko, D. (2017). The Development of Interpretataion Method for Remote Sensing Imagery In Determining The Candidate of Landslide In Leitimur Paninsula, Ambon Island. Jurnal Ilmu Lingkungan, 15(1), 20-34, doi:10.14710/jil.15.1.20-34


Sign in / Sign up

Export Citation Format

Share Document