scholarly journals The Effect of Topographic Correction on Forest Tree Species Classification Accuracy

2020 ◽  
Vol 12 (5) ◽  
pp. 787
Author(s):  
Chao Dong ◽  
Gengxing Zhao ◽  
Yan Meng ◽  
Baihong Li ◽  
Bo Peng

Topographic correction can reduce the influences of topographic factors and improve the accuracy of forest tree species classification when using remote-sensing data to investigate forest resources. In this study, the Mount Taishan forest farm is the research area. Based on Landsat 8 OLI data and field survey subcompartment data, four topographic correction models (cosine model, C model, solar-canopy-sensor (SCS)+C model and empirical rotation model) were used on the Google Earth Engine (GEE) platform to carry out algorithmic data correction. Then, the tree species in the study area were classified by the random forest method. Combined with the tree species classification process, the topographic correction effects were analyzed, and the effects, advantages and disadvantages of each correction model were evaluated. The results showed that the SCS+C model and empirical rotation model were the best models in terms of visual effect, reducing the band standard deviation and adjusting the reflectance distribution. When we used the SCS+C model to correct the remote-sensing image, the total accuracy increased by 4% when using the full-coverage training areas to classify tree species and by nearly 13% when using the shadowless training area. In the illumination condition interval of 0.4–0.6, the inconsistency rate decreased significantly; however, the inconsistency rate increased with increasing illumination condition values. Topographic correction can enhance reflectance information in shaded areas and can significantly improve the image quality. Topographic correction can be used as a pretreatment method for forest species classification when the study area’s dominant tree species are in a low light intensity area.

Author(s):  
E. Tusa ◽  
J. M. Monnet ◽  
J. B. Barré ◽  
M. Dalla Mura ◽  
J. Chanussot

Abstract. Hyperspectral images (HI) and Light Detection and Ranging (LiDAR) provide high resolution radiometric and geometric information for monitoring forests at individual tree crown (ITC) level. It has many important applications for sustainable forest management, biodiversity assessment and healthy ecosystem preservation. However, the integration of different remote sensing modalities is a challenging task for tree species classification due to different artifacts such as the lighting variability, the topographic effects and the atmospheric conditions of the data acquisition. The characterization of ITC can benefit from the extraction and selection of robust feature descriptors that solve these issues. This paper aims to investigate the integration of feature descriptors from HI and LiDAR by using the intra-set and inter-set feature importance for the semantic segmentation of forest tree species. A fusion methodology is proposed between high-density LiDAR data – (20 pulses m−2) and VNIR HI – (160 bands and 0.80 m spatial resolution) acquired on French temperate forests along an altitude gradient. The proposed scheme has three inputs: the field inventory information, the HI and the LiDAR data. Our approach can be described in nine stages: polygon projection, non-overlapping pixel selection, vegetation and shadow removal, LiDAR feature extraction, height mask, robust PCA (rPCA), feature reduction and classification. The overall accuracy of tree species classification at pixel-level was 68.9% by using random forest (RF) classifier. Our approach showed that 74.0% of trees were correctly assigned overall, by having conifer species such as Norway Spruce (Picea abies) with a producer’s accuracy of 97.4%.


Author(s):  
Shou Hao Chiang ◽  
Miguel Valdez ◽  
Chi-Farn Chen

Forest is a very important ecosystem and natural resource for living things. Based on forest inventories, government is able to make decisions to converse, improve and manage forests in a sustainable way. Field work for forestry investigation is difficult and time consuming, because it needs intensive physical labor and the costs are high, especially surveying in remote mountainous regions. A reliable forest inventory can give us a more accurate and timely information to develop new and efficient approaches of forest management. The remote sensing technology has been recently used for forest investigation at a large scale. To produce an informative forest inventory, forest attributes, including tree species are unavoidably required to be considered. <br><br> In this study the aim is to classify forest tree species in Erdenebulgan County, Huwsgul province in Mongolia, using Maximum Entropy method. The study area is covered by a dense forest which is almost 70% of total territorial extension of Erdenebulgan County and is located in a high mountain region in northern Mongolia. For this study, Landsat satellite imagery and a Digital Elevation Model (DEM) were acquired to perform tree species mapping. The forest tree species inventory map was collected from the Forest Division of the Mongolian Ministry of Nature and Environment as training data and also used as ground truth to perform the accuracy assessment of the tree species classification. Landsat images and DEM were processed for maximum entropy modeling, and this study applied the model with two experiments. The first one is to use Landsat surface reflectance for tree species classification; and the second experiment incorporates terrain variables in addition to the Landsat surface reflectance to perform the tree species classification. All experimental results were compared with the tree species inventory to assess the classification accuracy. Results show that the second one which uses Landsat surface reflectance coupled with terrain variables produced better result, with the higher overall accuracy and kappa coefficient than first experiment. The results indicate that the Maximum Entropy method is an applicable, and to classify tree species using satellite imagery data coupled with terrain information can improve the classification of tree species in the study area.


Author(s):  
Shou Hao Chiang ◽  
Miguel Valdez ◽  
Chi-Farn Chen

Forest is a very important ecosystem and natural resource for living things. Based on forest inventories, government is able to make decisions to converse, improve and manage forests in a sustainable way. Field work for forestry investigation is difficult and time consuming, because it needs intensive physical labor and the costs are high, especially surveying in remote mountainous regions. A reliable forest inventory can give us a more accurate and timely information to develop new and efficient approaches of forest management. The remote sensing technology has been recently used for forest investigation at a large scale. To produce an informative forest inventory, forest attributes, including tree species are unavoidably required to be considered. &lt;br&gt;&lt;br&gt; In this study the aim is to classify forest tree species in Erdenebulgan County, Huwsgul province in Mongolia, using Maximum Entropy method. The study area is covered by a dense forest which is almost 70% of total territorial extension of Erdenebulgan County and is located in a high mountain region in northern Mongolia. For this study, Landsat satellite imagery and a Digital Elevation Model (DEM) were acquired to perform tree species mapping. The forest tree species inventory map was collected from the Forest Division of the Mongolian Ministry of Nature and Environment as training data and also used as ground truth to perform the accuracy assessment of the tree species classification. Landsat images and DEM were processed for maximum entropy modeling, and this study applied the model with two experiments. The first one is to use Landsat surface reflectance for tree species classification; and the second experiment incorporates terrain variables in addition to the Landsat surface reflectance to perform the tree species classification. All experimental results were compared with the tree species inventory to assess the classification accuracy. Results show that the second one which uses Landsat surface reflectance coupled with terrain variables produced better result, with the higher overall accuracy and kappa coefficient than first experiment. The results indicate that the Maximum Entropy method is an applicable, and to classify tree species using satellite imagery data coupled with terrain information can improve the classification of tree species in the study area.


2021 ◽  
Vol 13 (14) ◽  
pp. 2716
Author(s):  
Kaijian Xu ◽  
Zhaoying Zhang ◽  
Wanwan Yu ◽  
Ping Zhao ◽  
Jibo Yue ◽  
...  

The distribution of forest tree species provides crucial data for regional forest management and ecological research. Although medium-high spatial resolution remote sensing images are widely used for dynamic monitoring of forest vegetation phenology and species identification, the use of multiresolution images for similar applications remains highly uncertain. Moreover, it is necessary to explore to what extent spectral variation is responsible for the discrepancies in the estimation of forest phenology and classification of various tree species when using up-scaled images. To clarify this situation, we studied the forest area in Harqin Banner in northeast China by using year-round multiple-resolution time-series images (at four spatial resolutions: 4, 10, 16, and 30 m) and eight phenological metrics of four deciduous forest tree species in 2018, to explore potential impacts of relevant results caused by various resolutions. We also investigated the effect of using up-scaled time-series images by comparing the corresponding results that use pixel-aggregation algorithms with the four spatial resolutions. The results indicate that both phenology and classification accuracy of the dominant forest tree species are markedly affected by the spatial resolution of time-series remote sensing data (p < 0.05): the spring phenology of four deciduous forest tree species first rises and then falls as the image resolution varies from 4 to 30 m; similarly, the accuracy of tree species classification increases as the image resolution varies from 4 to 10 m, and then decreases as the image resolution gradually falls to 30 m (p < 0.05). Therefore, there remains a profound discrepancy between the results obtained by up-scaled and actual remote sensing data at the given spatial resolutions (p < 0.05). The results also suggest that combining phenological metrics and time-series NDVI data can be applied to identify the regional dominant tree species across different spatial resolutions, which would help advance the use of multiscale time-series satellite data for forest resource management.


PeerJ ◽  
2019 ◽  
Vol 6 ◽  
pp. e6227 ◽  
Author(s):  
Michele Dalponte ◽  
Lorenzo Frizzera ◽  
Damiano Gianelle

An international data science challenge, called National Ecological Observatory Network—National Institute of Standards and Technology data science evaluation, was set up in autumn 2017 with the goal to improve the use of remote sensing data in ecological applications. The competition was divided into three tasks: (1) individual tree crown (ITC) delineation, for identifying the location and size of individual trees; (2) alignment between field surveyed trees and ITCs delineated on remote sensing data; and (3) tree species classification. In this paper, the methods and results of team Fondazione Edmund Mach (FEM) are presented. The ITC delineation (Task 1 of the challenge) was done using a region growing method applied to a near-infrared band of the hyperspectral images. The optimization of the parameters of the delineation algorithm was done in a supervised way on the basis of the Jaccard score using the training set provided by the organizers. The alignment (Task 2) between the delineated ITCs and the field surveyed trees was done using the Euclidean distance among the position, the height, and the crown radius of the ITCs and the field surveyed trees. The classification (Task 3) was performed using a support vector machine classifier applied to a selection of the hyperspectral bands and the canopy height model. The selection of the bands was done using the sequential forward floating selection method and the Jeffries Matusita distance. The results of the three tasks were very promising: team FEM ranked first in the data science competition in Task 1 and 2, and second in Task 3. The Jaccard score of the delineated crowns was 0.3402, and the results showed that the proposed approach delineated both small and large crowns. The alignment was correctly done for all the test samples. The classification results were good (overall accuracy of 88.1%, kappa accuracy of 75.7%, and mean class accuracy of 61.5%), although the accuracy was biased toward the most represented species.


Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1284 ◽  
Author(s):  
Sean Hartling ◽  
Vasit Sagan ◽  
Paheding Sidike ◽  
Maitiniyazi Maimaitijiang ◽  
Joshua Carron

Urban areas feature complex and heterogeneous land covers which create challenging issues for tree species classification. The increased availability of high spatial resolution multispectral satellite imagery and LiDAR datasets combined with the recent evolution of deep learning within remote sensing for object detection and scene classification, provide promising opportunities to map individual tree species with greater accuracy and resolution. However, there are knowledge gaps that are related to the contribution of Worldview-3 SWIR bands, very high resolution PAN band and LiDAR data in detailed tree species mapping. Additionally, contemporary deep learning methods are hampered by lack of training samples and difficulties of preparing training data. The objective of this study was to examine the potential of a novel deep learning method, Dense Convolutional Network (DenseNet), to identify dominant individual tree species in a complex urban environment within a fused image of WorldView-2 VNIR, Worldview-3 SWIR and LiDAR datasets. DenseNet results were compared against two popular machine classifiers in remote sensing image analysis, Random Forest (RF) and Support Vector Machine (SVM). Our results demonstrated that: (1) utilizing a data fusion approach beginning with VNIR and adding SWIR, LiDAR, and panchromatic (PAN) bands increased the overall accuracy of the DenseNet classifier from 75.9% to 76.8%, 81.1% and 82.6%, respectively. (2) DenseNet significantly outperformed RF and SVM for the classification of eight dominant tree species with an overall accuracy of 82.6%, compared to 51.8% and 52% for SVM and RF classifiers, respectively. (3) DenseNet maintained superior performance over RF and SVM classifiers under restricted training sample quantities which is a major limiting factor for deep learning techniques. Overall, the study reveals that DenseNet is more effective for urban tree species classification as it outperforms the popular RF and SVM techniques when working with highly complex image scenes regardless of training sample size.


Sign in / Sign up

Export Citation Format

Share Document