scholarly journals Monitoring and Projecting Land Use/Land Cover Changes of Eleven Large Deltaic Areas in Greece from 1945 Onwards

2020 ◽  
Vol 12 (8) ◽  
pp. 1241
Author(s):  
Anastasia Krina ◽  
Fotios Xystrakis ◽  
Kostas Karantininis ◽  
Nikos Koutsias

Wetlands are areas of high biodiversity and provide many ecosystem services of high value. However, they are under constant threat from intense anthropogenic pressures, mainly agriculture intensification, urbanization, pollution, and climate change. The temporal and spatial patterns of land use/land cover (LULC) changes within eleven large wetlands in Greece were analyzed based on thematic maps generated from aerial orthophotos taken in 1945, 1975, and 2007. Socio-economic developments and the consequent need for more arable land and utilization of water resources are among the factors that mainly determine their evolution. In 2007, LULC classes related to wetland vegetation were reduced to one third as compared to 1945 and they were mainly replaced with croplands and urban infrastructures. Each of the different sub-periods that was considered (1945–1975 and 1975–2007) was distinguished by characteristic patterns of change. Agricultural land increased up to 42% from 1945 to 1975 and became the dominant LULC class in all deltaic areas but Evros. A considerable stability was observed for the period 1975–2007 for all LULC classed but it is remarkable the extent of urban areas that doubled. There is a tendency of landscape simplification and homogenization among the deltaic areas and the output of Markov chain analysis indicates that future composition of deltaic landscapes will be similar to the current one if the main driving forces remain constant. Changes in LULC composition and structure are also combined with coastal erosion in all deltaic areas. This is attributed to the modification of sedimentary deposits due to dam construction. The results summarize the change trajectories of the major deltaic areas in Greece from 1945 to 2007 thus offering a great outlook of changes that allows managers to understand how policies and socio-economic requirements affect the deltaic ecosystems and what decisions should be made to protect and enhance them.

BMC Zoology ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Mariëtte Pretorius ◽  
Wanda Markotter ◽  
Mark Keith

Abstract Background Modification and destruction of natural habitats are bringing previously unencountered animal populations into contact with humans, with bats considered important zoonotic transmission vectors. Caves and cave-dwelling bats are under-represented in conservation plans. In South Africa, at least two cavernicolous species are of interest as potential zoonotic hosts: the Natal long-fingered bat Miniopterus natalensis and the Egyptian fruit bat Rousettus aegyptiacus. Little information is available about the anthropogenic pressures these species face around important roost sites. Both bats are numerous and widespread throughout the country; land-use changes and urban expansions are a rising concern for both conservation and increased bat-human contact. Results Our study addressed this shortfall by determining the extent of land-cover change around 47 roosts between 2014 and 2018 using existing land cover datasets. We determined the land-cover composition around important roost sites (including maternity, hibernacula and co-roosts), distances to urban settlements and assessed the current protection levels of roost localities. We detected an overall 4% decrease in natural woody vegetation (trees) within 5 km buffer zones of all roost sites, with a 10% decrease detected at co-roost sites alone. Agricultural land cover increased the most near roost sites, followed by plantations and urban land-cover. Overall, roosts were located 4.15 ± 0.91 km from urban settlements in 2018, the distances decreasing as urban areas expand. According to the South African National Biodiversity Institute Ecosystem Threat Status assessment, 72% of roosts fall outside of well-protected ecosystems. Conclusions The current lack of regulatory protection of cavernicolous bats and their roosts, increasing anthropogenic expansions and proximity to human settlements raises concerns about increased human-bat contact. Furthermore, uncontrolled roost visitation and vandalism are increasing, contributing to bat health risks and population declines, though the extent of roosts affected is yet to be quantified. In an era where pandemics are predicted to become more frequent and severe due to land-use change, our research is an urgent call for the formal protection of bat-inhabited caves to safeguard both bats and humans.


2020 ◽  
Vol 12 (4) ◽  
pp. 1556 ◽  
Author(s):  
Onggarbek Alipbeki ◽  
Chaimgul Alipbekova ◽  
Arnold Sterenharz ◽  
Zhanat Toleubekova ◽  
Meirzhan Aliyev ◽  
...  

In this study, the spatiotemporal dynamics of land use and land cover (LULC) were evaluated in the peri-urban area of the Arshaly district, which borders the capital of the Republic of Kazakhstan. Landsat multispectral images were used to study the changes in LULC. The analysis of LULC dynamics was carried out using supervised classification with a multi-temporal interval (1998, 2008, and 2018). During the study period, noticeable changes occurred in LULC. There was an increase in the area of arable land and forests and a reduction in the pastures. There was a sharp increase in the built-up area; that is, there was an intensification of land use through an increase in the share of arable land as well as the transformation of agricultural land for development. However, in general, the influence of urban sprawl in this peri-urban area has so far been accompanied by only a slight focus on its sustainable development.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Belayneh Bufebo ◽  
Eyasu Elias

Land use change is one of the challenges that aggravate environmental problems. Understanding the scope of land use change, driving forces, and consequences is very crucial for proper management of land resources. We investigated land use/land cover changes using remote sensing data (for the years 1973, 1995, and 2017), and field observation, household survey, key informant interview, and focus group discussion were used to determine the drivers and consequences of land use/land cover changes in Shenkolla watershed, south central Ethiopia. Unsupervised and supervised classification techniques were employed to get thematic information from satellite imagery. ArcGIS 10.3 and QGIS v 3.0 softwares were used to accomplish the analysis. The results disclosed that Shenkolla watershed has changed significantly during the past 4 decades between 1973 and 2017. This observed change indicates a reduction in forest land and an increase in agricultural land. Forest land was reduced from 29.51% in 1973 to 20.52% in 2017, but agricultural land was expanded from 70.49% in 1973 to 79.48% in 2017. Agricultural expansion, policy change and social unrest, population pressure, shortage of farm land, and biophysical factors were major driving forces of the LU/LC changes. Environmental implications such as climate change, biodiversity loss, scarcity of basic forest products, habitat alteration, decline in quality and availability of water, and crop yield reduction are the consequences of the LU/LC change. The expansion of agricultural land at the expense of forest cover in Shenkolla watershed has negative implications on the natural resources and the livelihood of local people. Hence, appropriate measures need to be employed to reduce the dramatic change in land use and to harmonize environmental conservation with human livelihood.


Geosciences ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 312
Author(s):  
Barbara Wiatkowska ◽  
Janusz Słodczyk ◽  
Aleksandra Stokowska

Urban expansion is a dynamic and complex phenomenon, often involving adverse changes in land use and land cover (LULC). This paper uses satellite imagery from Landsat-5 TM, Landsat-8 OLI, Sentinel-2 MSI, and GIS technology to analyse LULC changes in 2000, 2005, 2010, 2015, and 2020. The research was carried out in Opole, the capital of the Opole Agglomeration (south-western Poland). Maps produced from supervised spectral classification of remote sensing data revealed that in 20 years, built-up areas have increased about 40%, mainly at the expense of agricultural land. Detection of changes in the spatial pattern of LULC showed that the highest average rate of increase in built-up areas occurred in the zone 3–6 km (11.7%) and above 6 km (10.4%) from the centre of Opole. The analysis of the increase of built-up land in relation to the decreasing population (SDG 11.3.1) has confirmed the ongoing process of demographic suburbanisation. The paper shows that satellite imagery and GIS can be a valuable tool for local authorities and planners to monitor the scale of urbanisation processes for the purpose of adapting space management procedures to the changing environment.


2013 ◽  
Vol 8 (1) ◽  
pp. 084596 ◽  
Author(s):  
Zhongchang Sun ◽  
Xinwu Li ◽  
Wenxue Fu ◽  
Yingkui Li ◽  
Dongsheng Tang

Author(s):  
Ibrar ul Hassan Akhtar ◽  
Athar Hussain ◽  
Kashif Javed ◽  
Hammad Ghazanfar

Developing countries like Pakistan is among those where lack of adoption to science and technology advancement is a major constraint for Satellite Remote Sensing use in crops and land use land cover digital information generation. Exponential rise in country population, increased food demand, limiting natural resources coupled with migration of rural community to urban areas had further led to skewed official statistics. This study is an attempt to demonstrate the possible use of freely available satellite data like Landsat8 under complex cropping system of Okara district of Punjab, Pakistan. An Integrated approach has been developed for the satellite data based crops and land use/cover spatial area estimation. The resultant quality was found above 96% with Kappa statistics of 0.95. Land utilization statistics provided detail information about cropping patterns as well as land use land cover status. Rice was recorded as most dominating crop in term of cultivation area of around 0.165 million ha followed by autumn maize 0.074 million ha, Fallow crop fields 0.067 million ha and Sorghum 0.047 million ha. Other minor crops observed were potato, fodder and cotton being cultivated on less than 0.010 million ha. Population settlements were observed over an area of around 0.081 million ha of land. 


2010 ◽  
Vol 1 (2) ◽  
pp. 55-70 ◽  
Author(s):  
Hyun Joong Kim

Rapidly growing urban areas tend to reveal distinctive spatial and temporal variations of land use/land cover in a locally urbanized environment. In this article, the author analyzes urban growth phenomena at a local scale by employing Geographic Information Systems, remotely sensed image data from 1984, 1994, and 2004, and landscape shape index. Since spatial patterns of land use/land cover changes in small urban areas are not fully examined by the current GIS-based modeling studies or simulation applications, the major objective of this research is to identify and examine the spatial and temporal dynamics of land use changes of urban growth at a local scale. Analytical results demonstrate that sizes, locations, and shapes of new developments are spatio-temporally associated with their landscape variations and major transportation arteries. The key findings from this study contribute to GIS-based urban growth modeling studies and urban planning practices for local communities.


GeoJournal ◽  
2019 ◽  
Vol 85 (3) ◽  
pp. 747-760 ◽  
Author(s):  
Terefe Tolessa ◽  
Chala Dechassa ◽  
Belay Simane ◽  
Bamlaku Alamerew ◽  
Moges Kidane

Sign in / Sign up

Export Citation Format

Share Document