scholarly journals Spatial-Temporal Land Use and Land Cover Changes in Urban Areas Using Remote Sensing Images and GIS Analysis: The Case Study of Opole, Poland

Geosciences ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 312
Author(s):  
Barbara Wiatkowska ◽  
Janusz Słodczyk ◽  
Aleksandra Stokowska

Urban expansion is a dynamic and complex phenomenon, often involving adverse changes in land use and land cover (LULC). This paper uses satellite imagery from Landsat-5 TM, Landsat-8 OLI, Sentinel-2 MSI, and GIS technology to analyse LULC changes in 2000, 2005, 2010, 2015, and 2020. The research was carried out in Opole, the capital of the Opole Agglomeration (south-western Poland). Maps produced from supervised spectral classification of remote sensing data revealed that in 20 years, built-up areas have increased about 40%, mainly at the expense of agricultural land. Detection of changes in the spatial pattern of LULC showed that the highest average rate of increase in built-up areas occurred in the zone 3–6 km (11.7%) and above 6 km (10.4%) from the centre of Opole. The analysis of the increase of built-up land in relation to the decreasing population (SDG 11.3.1) has confirmed the ongoing process of demographic suburbanisation. The paper shows that satellite imagery and GIS can be a valuable tool for local authorities and planners to monitor the scale of urbanisation processes for the purpose of adapting space management procedures to the changing environment.

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Jane Ferah Gondwe ◽  
Sun Li ◽  
Rodger Millar Munthali

Blantyre City has experienced a wide range of changes in land use and land cover (LULC). This study used Remote Sensing (RS) to detect and quantify LULC changes that occurred in the city throughout a twenty-year study period, using Landsat 7 Enhanced Thematic Mapper (ETM+) images from 1999 and 2010 and Landsat 8 Operational Land Imager (OLI) images from 2019. A supervised classification method using an Artificial Neural Network (ANN) was used to classify and map LULC types. The kappa coefficient and the overall accuracy were used to ascertain the classification accuracy. Using the classified images, a postclassification comparison approach was used to detect LULC changes between 1999 and 2019. The study revealed that built-up land and agricultural land increased in their respective areas by 28.54 km2 (194.81%) and 35.80 km2 (27.16%) with corresponding annual change rates of 1.43 km·year−1 and 1.79 km·year−1. The area of bare land, forest land, herbaceous land, and waterbody, respectively, decreased by 0.05%, 90.52%, 71.67%, and 6.90%. The LULC changes in the study area were attributed to urbanization, population growth, social-economic growth, and climate change. The findings of this study provide information on the changes in LULC and driving factors, which Blantyre City authorities can utilize to develop sustainable development plans.


Author(s):  
E. Fundisi ◽  
W. Musakwa

Urban areas, particularly in developing countries face immense challenges such as climate change, poverty, lack of resources poor land use management systems, and week environmental management practices. Mitigating against these challenges is often hampered by lack of data on urban expansion, urban footprint and land cover. To support the recently adopted new urban agenda 2030 there is need for the provision of information to support decision making in the urban areas. Earth observation has been identified as a tool to foster sustainable urban planning and smarter cities as recognized by the new urban agenda, because it is a solution to unavailability of data. Accordingly, this study uses high resolution EO data Pleiades satellite imagery to map and document land cover for the rapidly expanding area of Midrand in Johannesburg, South Africa. An unsupervised land cover classification of the Pleiades satellite imagery was carried out using ENVI software, whereas NDVI was derived using ArcGIS software. The land cover had an accuracy of 85% that is highly adequate to document the land cover in Midrand. The results are useful because it provides a highly accurate land cover and NDVI datasets at localised spatial scale that can be used to support land use management strategies within Midrand and the City of Johannesburg South Africa.


2021 ◽  
Vol 13 (24) ◽  
pp. 13602
Author(s):  
Hossain Mohammad Arifeen ◽  
Md. Shahariar Chowdhury ◽  
Haoran Zhang ◽  
Tanita Suepa ◽  
Nowshad Amin ◽  
...  

Land use and land cover (LULC) change is considered among the most discussed issues associated with development nowadays. It is necessary to provide factual and up-to-date information to policymakers to fulfil the increasing population’s food, work, and habitation needs while ensuring environmental sustainability. Geographical Information System (GIS) and Remote sensing can perform such work adequately. This study aims to assess land use and land cover changes concerning the Barapukuria coal mine and its adjacent areas in Bangladesh by applying remote sensing and GIS (geographical information system) techniques. This research work used time-series satellite images from the Landsat 7 ETM+ satellite between 1999 and 2009 and the Landsat 8 OLI/TIRS satellite for 2019. Supervised classification maximum likelihood classifier matrix was implemented using ERDAS Imagine 2018. The images were categorised into four definite classes: settlement, agricultural land, forest land, and waterbody. Analytical results clearly indicated that settlements and agricultural land had increasing and decreasing trends over the past 20 years, respectively. Settlements increased from 22% to 34% between 1999 and 2019. However, agricultural land reduced from 69% to 59% in the same period. Settlements grew by more than 50% during this period. The research had an overall accuracy of 70%, while the kappa coefficient was more than 0.60. There were land subsidence issues because of mining activities, leading to 1.003 km2 area being depressed and 1500 houses cracked. This research depicts the present LULC scenario and the impact of the coalfield area. It is expected to reduce the burden on policymakers to prepare a proper and effective mines development policy in Bangladesh and meet sustainable development goal (SDG) 15 (Life on land).


2020 ◽  
Vol 3 (1) ◽  
pp. 11-23 ◽  
Author(s):  
Abdulla Al Kafy ◽  
Abdullah Al-Faisal ◽  
Mohammad Mahmudul Hasan ◽  
Md. Soumik Sikdar ◽  
Mohammad Hasib Hasan Khan ◽  
...  

Urbanization has been contributing more in global climate warming, with more than 50% of the population living in cities. Rapid population growth and change in land use / land cover (LULC) are closely linked. The transformation of LULC due to rapid urban expansion significantly affects the functions of biodiversity and ecosystems, as well as local and regional climates. Improper planning and uncontrolled management of LULC changes profoundly contribute to the rise of urban land surface temperature (LST). This study evaluates the impact of LULC changes on LST for 1997, 2007 and 2017 in the Rajshahi district (Bangladesh) using multi-temporal and multi-spectral Landsat 8 OLI and Landsat 5 TM satellite data sets. The analysis of LULC changes exposed a remarkable increase in the built-up areas and a significant decrease in the vegetation and agricultural land. The built-up area was increased almost double in last 20 years in the study area. The distribution of changes in LST shows that built-up areas recorded the highest temperature followed by bare land, vegetation and agricultural land and water bodies. The LULC-LST profiles also revealed the highest temperature in built-up areas and the lowest temperature in water bodies. In the last 20 years, LST was increased about 13ºC. The study demonstrates decrease in vegetation cover and increase in non-evaporating surfaces with significantly increases the surface temperature in the study area. Remote-sensing techniques were found one of the suitable techniques for rapid analysis of urban expansions and to identify the impact of urbanization on LST.


Land ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 231
Author(s):  
Can Trong Nguyen ◽  
Amnat Chidthaisong ◽  
Phan Kieu Diem ◽  
Lian-Zhi Huo

Bare soil is a critical element in the urban landscape and plays an essential role in urban environments. Yet, the separation of bare soil and other land cover types using remote sensing techniques remains a significant challenge. There are several remote sensing-based spectral indices for barren detection, but their effectiveness varies depending on land cover patterns and climate conditions. Within this research, we introduced a modified bare soil index (MBI) using shortwave infrared (SWIR) and near-infrared (NIR) wavelengths derived from Landsat 8 (OLI—Operational Land Imager). The proposed bare soil index was tested in two different bare soil patterns in Thailand and Vietnam, where there are large areas of bare soil during the agricultural fallow period, obstructing the separation between bare soil and urban areas. Bare soil extracted from the MBI achieved higher overall accuracy of about 98% and a kappa coefficient over 0.96, compared to bare soil index (BSI), normalized different bare soil index (NDBaI), and dry bare soil index (DBSI). The results also revealed that MBI considerably contributes to the accuracy of land cover classification. We suggest using the MBI for bare soil detection in tropical climatic regions.


Author(s):  
A. B. Rimba ◽  
T. Atmaja ◽  
G. Mohan ◽  
S. K. Chapagain ◽  
A. Arumansawang ◽  
...  

Abstract. Bali has been open to tourism since the beginning of the 20th century and is known as the first tourist destination in Indonesia. The Denpasar, Badung, Gianyar, and Tabanan (Sarbagita) areas experience the most rapid growth of tourism activity in Bali. This rapid tourism growth has caused land use and land cover (LULC) to change drastically. This study mapped the land-use change in Bali from 2000 to 2025. The land change modeller (LCM) tool in ArcGIS was employed to conduct this analysis. The images were classified into agricultural land, open area, mangrove, vegetation/forest, and built-up area. Some Landsat images in 2000 and 2015 were exploited in predicting the land use and land cover (LULC) change in 2019 and 2025. To measure the accuracy of prediction, Landsat 8 OLI images for 2019 were classified and tested to verify the LULC model for 2019. The Multi-Layer Perceptron (MLP) neural network was trained with two influencing factors: elevation and road network. The result showed that the built-up growth direction expanded from the Denpasar area to the neighbouring areas, and land was converted from agriculture, open area and vegetation/forest to built-up for all observation years. The built-up was predicted growing up to 43 % from 2015 to 2025. This model could support decision-makers in issuing a policy for monitoring LULC since the Kappa coefficients were more than 80% for all models.


2020 ◽  
Vol 202 ◽  
pp. 06036
Author(s):  
Nurhadi Bashit ◽  
Novia Sari Ristianti ◽  
Yudi Eko Windarto ◽  
Desyta Ulfiana

Klaten Regency is one of the regencies in Central Java Province that has an increasing population every year. This can cause an increase in built-up land for human activities. The built-up land needs to be monitored so that the construction is in accordance with the regional development plan so that it does not cause problems such as the occurrence of critical land. Therefore, it is necessary to monitor land use regularly. One method for monitoring land use is the remote sensing method. The remote sensing method is much more efficient in mapping land use because without having to survey the field. The remote sensing method utilizes satellite imagery data that can be processed for land use classification. This study uses the sentinel 2 satellite image data with the Object-Based Image Analysis (OBIA) algorithm to obtain land use classification. Sentinel 2 satellite imagery is a medium resolution image category with a spatial resolution of 10 meters. The land use classification can be used to see the distribution of built-up land in Klaten Regency without having to conduct a field survey. The results of the study obtained a segmentation scale parameter value of 60 and a merge scale parameter value of 85. The classification results obtained by 5 types of land use with OBIA. Agricultural land use dominates with an area of 50% of the total area.


2020 ◽  
Vol 27 (2) ◽  
pp. 1-7
Author(s):  
M. Haruna ◽  
M.K. Ibrahim ◽  
U.M. Shaibu

This study applied GIS and remote sensing technology to assess agricultural land use and vegetative cover in Kano Metropolis. It specifically examined the intensity of land use for agricultural and non agricultural purpose from 1975 – 2015. Images (1975, 1995 and 2015), landsat MSS/TM, landsat 8, scene of path 188 and 052 were downloaded for the study. Bonds for these imported scenes were processed using ENVI 5.0 version. The result indicated five classified features-settlement, farmland, water body, vegetation and bare land. The finding revealed an increase in settlement, vegetation and bare land between 1995 and 2015, however, farmland decreased in 2015. Indicatively, higher percentage of land use for non agricultural purposes was observed in recent time. Conclusively, there is need to accord surveying the rightful place and priority in agricultural planning and development if Nigeria is to be self food sufficient. Keywords: Geographic Information System, Agriculture, Remote sensing, Land use, Land cover


2010 ◽  
Vol 1 (2) ◽  
pp. 55-70 ◽  
Author(s):  
Hyun Joong Kim

Rapidly growing urban areas tend to reveal distinctive spatial and temporal variations of land use/land cover in a locally urbanized environment. In this article, the author analyzes urban growth phenomena at a local scale by employing Geographic Information Systems, remotely sensed image data from 1984, 1994, and 2004, and landscape shape index. Since spatial patterns of land use/land cover changes in small urban areas are not fully examined by the current GIS-based modeling studies or simulation applications, the major objective of this research is to identify and examine the spatial and temporal dynamics of land use changes of urban growth at a local scale. Analytical results demonstrate that sizes, locations, and shapes of new developments are spatio-temporally associated with their landscape variations and major transportation arteries. The key findings from this study contribute to GIS-based urban growth modeling studies and urban planning practices for local communities.


2020 ◽  
Author(s):  
Jieun Kim ◽  
Jaehyung Yu ◽  
Sang Kee Seo ◽  
Jin-Hee Baek ◽  
Byung Chil Jeon

<p>The climate change causes major problems in natural disasters such as storms and droughts and has significant impacts on agricultural activities. Especially, global warming changed crops cultivated causing changes in agricultural land-use, and droughts along with land-use change accompanied serious problems in irrigation management. Moreover, it is very problematic to detect drought impacted areas with field survey and it burdens irrigation management. In South Korea, drought in 2012 occurred in western area while 2015 drought occurred in eastern area. The drought cycle in Korea is irregular but the drought frequency has shown an increasing pattern. Remote sensing approaches has been used as a solution to detect drought areas in agricultural land-use and many approaches has been introduced for drought monitoring. This study introduces remote sensing approaches to detect agricultural drought by calculation of local threshold associated with agricultural land-use. We used Landsat-8 satellite images for drought and non-drought years, and Vegetation Health Index(VHI) was calculated using red, near-infrared, and thermal-infrared bands. The comparative analysis of VHI values for the same agricultural land-use between drought year and non-drought year derived the threshold values for each type of land-use. The results showed very effective detection of drought impacted areas showing distinctive differences in VHI value distributions between drought and non-drought years.</p>


Sign in / Sign up

Export Citation Format

Share Document