scholarly journals Evaluating the Relationships of Inter-Annual Farmland Vegetation Dynamics with Biodiversity Using Multi-Spatial and Multi-Temporal Remote Sensing Data

2020 ◽  
Vol 12 (9) ◽  
pp. 1479
Author(s):  
Niloofar Alavi ◽  
Douglas King

Agricultural landscapes are highly dynamic ecosystems, but the effects of temporal farmland vegetation dynamics on species diversity have not been widely studied. In 93 sample farm landscapes in eastern Ontario, Canada, biodiversity data for seven taxa were collected in 2011 and 2012, prior to the initiation of this study. The goal of this study was to determine if trends and variability in vegetation productivity detected in these sample landscapes using long-term archived moderate and coarse resolution remote sensing time series data are related to the measured biodiversity. Mid-summer Moderate Resolution Imaging Spectroradiometer (MODIS) (2000–2011) and Landsat 5 (1985–2011) Normalized Difference Vegetation Index (NDVI) data were used with the Thiel–Sen slope and Contextual Mann–Kendall trend analysis to identify pixels showing significant trends. NDVI temporal metrics included 1) the percentage of pixels in each landscape with a significant negative or positive trend, and 2) the temporal coefficient of variation (CV) of both the mean and spatial CV of landscape NDVI. Larger areas of significant positive NDVI trends were found in the sample landscapes than negative trends, the former being associated with agricultural intensification or crop changes and the latter with smaller areas of natural vegetation removal. Landsat better-detected changes in individual fields or small areas of natural vegetation due to its much smaller pixel size. In addition, the longer Landsat time series showed a change in the NDVI trend from positive (1985–2000) to negative or a leveling off (2000–2011) for many pixels. In biodiversity modeling, the Landsat temporal CV of NDVI was negatively correlated with 2011–2012 plant and beetle diversity, while plant biodiversity was positively correlated with the percentage of pixels in a sample landscape showing a significantly positive NDVI trend. No significant relationships were found using the MODIS data. This study shows that temporal trends and variability in farmland vegetation density derived from Landsat data are related to biodiversity for certain taxa and that such relationships should be considered along with the more commonly studied spatial landscape attributes in evaluating landscape-level impacts of farming on biodiversity.

2020 ◽  
Vol 12 (4) ◽  
pp. 1313
Author(s):  
Leah M. Mungai ◽  
Joseph P. Messina ◽  
Sieglinde Snapp

This study aims to assess spatial patterns of Malawian agricultural productivity trends to elucidate the influence of weather and edaphic properties on Moderate Resolution Imaging Spectroradiometer (MODIS)-Normalized Difference Vegetation Index (NDVI) seasonal time series data over a decade (2006–2017). Spatially-located positive trends in the time series that can’t otherwise be accounted for are considered as evidence of farmer management and agricultural intensification. A second set of data provides further insights, using spatial distribution of farmer reported maize yield, inorganic and organic inputs use, and farmer reported soil quality information from the Malawi Integrated Household Survey (IHS3) and (IHS4), implemented between 2010–2011 and 2016–2017, respectively. Overall, remote-sensing identified areas of intensifying agriculture as not fully explained by biophysical drivers. Further, productivity trends for maize crop across Malawi show a decreasing trend over a decade (2006–2017). This is consistent with survey data, as national farmer reported yields showed low yields across Malawi, where 61% (2010–11) and 69% (2016–17) reported yields as being less than 1000 Kilograms/Hectare. Yields were markedly low in the southern region of Malawi, similar to remote sensing observations. Our generalized models provide contextual information for stakeholders on sustainability of productivity and can assist in targeting resources in needed areas. More in-depth research would improve detection of drivers of agricultural variability.


Forests ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 139 ◽  
Author(s):  
Yingying Yang ◽  
Taixia Wu ◽  
Shudong Wang ◽  
Jing Li ◽  
Farhan Muhanmmad

Evergreen trees play a significant role in urban ecological services, such as air purification, carbon and oxygen balance, and temperature and moisture regulation. Remote sensing represents an essential technology for obtaining spatiotemporal distribution data for evergreen trees in cities. However, highly developed subtropical cities, such as Nanjing, China, have serious land fragmentation problems, which greatly increase the difficulty of extracting evergreen trees information and reduce the extraction precision of remote-sensing methods. This paper introduces a normalized difference vegetation index coefficient of variation (NDVI-CV) method to extract evergreen trees from remote-sensing data by combining the annual minimum normalized difference vegetation index (NDVIann-min) with the CV of a Landsat 8 time-series NDVI. To obtain an intra-annual, high-resolution time-series dataset, Landsat 8 cloud-free and partially cloud-free images over a three-year period were collected and reconstructed for the study area. Considering that the characteristic growth of evergreen trees remained nearly unchanged during the phenology cycle, NDVIann-min is the optimal phenological node to separate this information from that of other vegetation types. Furthermore, the CV of time-series NDVI considers all of the phenologically critical phases; therefore, the NDVI-CV method had higher extraction accuracy. As such, the approach presented herein represents a more practical and promising method based on reasonable NDVIann-min and CV thresholds to obtain spatial distribution data for evergreen trees. The experimental verification results indicated a comparable performance since the extraction accuracy of the model was over 85%, which met the classification accuracy requirements. In a cross-validation comparison with other evergreen trees’ extraction methods, the NDVI-CV method showed higher sensitivity and stability.


Author(s):  
Pantelis Samartsidis ◽  
Natasha N. Martin ◽  
Victor De Gruttola ◽  
Frank De Vocht ◽  
Sharon Hutchinson ◽  
...  

Abstract Objectives The causal impact method (CIM) was recently introduced for evaluation of binary interventions using observational time-series data. The CIM is appealing for practical use as it can adjust for temporal trends and account for the potential of unobserved confounding. However, the method was initially developed for applications involving large datasets and hence its potential in small epidemiological studies is still unclear. Further, the effects that measurement error can have on the performance of the CIM have not been studied yet. The objective of this work is to investigate both of these open problems. Methods Motivated by an existing dataset of HCV surveillance in the UK, we perform simulation experiments to investigate the effect of several characteristics of the data on the performance of the CIM. Further, we quantify the effects of measurement error on the performance of the CIM and extend the method to deal with this problem. Results We identify multiple characteristics of the data that affect the ability of the CIM to detect an intervention effect including the length of time-series, the variability of the outcome and the degree of correlation between the outcome of the treated unit and the outcomes of controls. We show that measurement error can introduce biases in the estimated intervention effects and heavily reduce the power of the CIM. Using an extended CIM, some of these adverse effects can be mitigated. Conclusions The CIM can provide satisfactory power in public health interventions. The method may provide misleading results in the presence of measurement error.


2018 ◽  
Vol 7 (11) ◽  
pp. 418 ◽  
Author(s):  
Tian Jiang ◽  
Xiangnan Liu ◽  
Ling Wu

Accurate and timely information about rice planting areas is essential for crop yield estimation, global climate change and agricultural resource management. In this study, we present a novel pixel-level classification approach that uses convolutional neural network (CNN) model to extract the features of enhanced vegetation index (EVI) time series curve for classification. The goal is to explore the practicability of deep learning techniques for rice recognition in complex landscape regions, where rice is easily confused with the surroundings, by using mid-resolution remote sensing images. A transfer learning strategy is utilized to fine tune a pre-trained CNN model and obtain the temporal features of the EVI curve. Support vector machine (SVM), a traditional machine learning approach, is also implemented in the experiment. Finally, we evaluate the accuracy of the two models. Results show that our model performs better than SVM, with the overall accuracies being 93.60% and 91.05%, respectively. Therefore, this technique is appropriate for estimating rice planting areas in southern China on the basis of a pre-trained CNN model by using time series data. And more opportunity and potential can be found for crop classification by remote sensing and deep learning technique in the future study.


2019 ◽  
Vol 11 (24) ◽  
pp. 3023 ◽  
Author(s):  
Shuai Xie ◽  
Liangyun Liu ◽  
Xiao Zhang ◽  
Jiangning Yang ◽  
Xidong Chen ◽  
...  

The Google Earth Engine (GEE) has emerged as an essential cloud-based platform for land-cover classification as it provides massive amounts of multi-source satellite data and high-performance computation service. This paper proposed an automatic land-cover classification method using time-series Landsat data on the GEE cloud-based platform. The Moderate Resolution Imaging Spectroradiometer (MODIS) land-cover products (MCD12Q1.006) with the International Geosphere–Biosphere Program (IGBP) classification scheme were used to provide accurate training samples using the rules of pixel filtering and spectral filtering, which resulted in an overall accuracy (OA) of 99.2%. Two types of spectral–temporal features (percentile composited features and median composited monthly features) generated from all available Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) data from the year 2010 ± 1 were used as input features to a Random Forest (RF) classifier for land-cover classification. The results showed that the monthly features outperformed the percentile features, giving an average OA of 80% against 77%. In addition, the monthly features composited using the median outperformed those composited using the maximum Normalized Difference Vegetation Index (NDVI) with an average OA of 80% against 78%. Therefore, the proposed method is able to generate accurate land-cover mapping automatically based on the GEE cloud-based platform, which is promising for regional and global land-cover mapping.


2020 ◽  
Vol 12 (21) ◽  
pp. 3524
Author(s):  
Feng Gao ◽  
Martha C. Anderson ◽  
W. Dean Hively

Cover crops are planted during the off-season to protect the soil and improve watershed management. The ability to map cover crop termination dates over agricultural landscapes is essential for quantifying conservation practice implementation, and enabling estimation of biomass accumulation during the active cover period. Remote sensing detection of end-of-season (termination) for cover crops has been limited by the lack of high spatial and temporal resolution observations and methods. In this paper, a new within-season termination (WIST) algorithm was developed to map cover crop termination dates using the Vegetation and Environment monitoring New Micro Satellite (VENµS) imagery (5 m, 2 days revisit). The WIST algorithm first detects the downward trend (senescent period) in the Normalized Difference Vegetation Index (NDVI) time-series and then refines the estimate to the two dates with the most rapid rate of decrease in NDVI during the senescent period. The WIST algorithm was assessed using farm operation records for experimental fields at the Beltsville Agricultural Research Center (BARC). The crop termination dates extracted from VENµS and Sentinel-2 time-series in 2019 and 2020 were compared to the recorded termination operation dates. The results show that the termination dates detected from the VENµS time-series (aggregated to 10 m) agree with the recorded harvest dates with a mean absolute difference of 2 days and uncertainty of 4 days. The operational Sentinel-2 time-series (10 m, 4–5 days revisit) also detected termination dates at BARC but had 7% missing and 10% false detections due to less frequent temporal observations. Near-real-time simulation using the VENµS time-series shows that the average lag times of termination detection are about 4 days for VENµS and 8 days for Sentinel-2, not including satellite data latency. The study demonstrates the potential for operational mapping of cover crop termination using high temporal and spatial resolution remote sensing data.


2008 ◽  
Vol 23 (1) ◽  
pp. 53-62 ◽  
Author(s):  
Russell N. Beck ◽  
Paul E. Gessler

Abstract The Inland Northwest United States contains extensive areas of complex, inaccessible terrain requiring significant resource expenditure for forest inventory, assessment, and monitoring. Cost-effective methods are necessary for annual broad-scale assessment of forest condition over complex terrain. Proficiency in the use of timely satellite image products along with spatial analysis tools such as geographic information systems can assist natural resource managers to understand regional dynamics and change within these landscapes. Satellite-derived vegetation indices such as the normalized difference vegetation index (NDVI) can effectively assess and monitor vegetation dynamics of large remote areas. This article presents a newly developed archive and example methods for monitoring forest dynamics through the creation of NDVI departure maps. The NDVI products were generated from a time series of Landsat imagery (1989–2004) to derive both density distributions and a long-term departure from average map for any year or series of years within the time series archive. A preliminary application of the data is demonstrated showing temporal trends of vegetation dynamics relating to harvesting and management within two small pilot study areas in north Idaho.


Land ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 102 ◽  
Author(s):  
Etido Essien ◽  
Samimi Cyrus

Uyo is one of the fastest-growing cities in Nigeria. In recent years, there has been a widespread change in land use, yet to date, there is no thorough mapping of vegetation change across the area. This study focuses on land use change, urban development, and the driving forces behind natural vegetation loss in Uyo. Based on time series Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper Plus (ETM+)/Operational Land Imager (OLI) image data, the relationships between urban land development and its influencing factors from 1985 to 2018 were analyzed using remote sensing (RS) and time series data. The results show eight land use cover classes. Three of these (forest, swamp vegetation, and mixed vegetation) are related to natural vegetation, and three (sparse built-up, dense built-up, and borrow pit) are direct consequences of urban infrastructure development changes to the landscape. Swamp vegetation, mixed vegetation, and forest are the most affected land use classes. Thus, the rapid growth of infrastructure and industrial centers and the rural and urban mobility of labor have resulted in an increased growth of built-up land. Additionally, the growth pattern of built-up land in Uyo corresponds with socioeconomic interviews conducted in the area. Land use changes in Uyo could be attributed to changes in economic structure, urbanization through infrastructure development, and population growth. Normalized difference vegetation index (NDVI) analysis shows a trend of decreasing vegetation in Uyo, which suggests that changes in economic structure represent a key driver of vegetation loss. Furthermore, the implementation of scientific and national policies by government agencies directed at reducing the effects of urbanization growth should be strengthened, in order to calm the disagreement between urban developers and environmental managers and promote sustainable land use.


Sign in / Sign up

Export Citation Format

Share Document