scholarly journals Canopy Height Estimation Using Sentinel Series Images through Machine Learning Models in a Mangrove Forest

2020 ◽  
Vol 12 (9) ◽  
pp. 1519 ◽  
Author(s):  
Sujit Madhab Ghosh ◽  
Mukunda Dev Behera ◽  
Somnath Paramanik

Canopy height serves as a good indicator of forest carbon content. Remote sensing-based direct estimations of canopy height are usually based on Light Detection and Ranging (LiDAR) or Synthetic Aperture Radar (SAR) interferometric data. LiDAR data is scarcely available for the Indian tropics, while Interferometric SAR data from commercial satellites are costly. High temporal decorrelation makes freely available Sentinel-1 interferometric data mostly unsuitable for tropical forests. Alternatively, other remote sensing and biophysical parameters have shown good correlation with forest canopy height. The study objective was to establish and validate a methodology by which forest canopy height can be estimated from SAR and optical remote sensing data using machine learning models i.e., Random Forest (RF) and Symbolic Regression (SR). Here, we analysed the potential of Sentinel-1 interferometric coherence and Sentinel-2 biophysical parameters to propose a new method for estimating canopy height in the study site of the Bhitarkanika wildlife sanctuary, which has mangrove forests. The results showed that interferometric coherence, and biophysical variables (Leaf Area Index (LAI) and Fraction of Vegetation Cover (FVC)) have reasonable correlation with canopy height. The RF model showed a Root Mean Squared Error (RMSE) of 1.57 m and R2 value of 0.60 between observed and predicted canopy heights; whereas, the SR model through genetic programming demonstrated better RMSE and R2 values of 1.48 and 0.62 m, respectively. The SR also established an interpretable model, which is not possible via any other machine learning algorithms. The FVC was found to be an essential variable for predicting forest canopy height. The canopy height maps correlated with ICESat-2 estimated canopy height, albeit modestly. The study demonstrated the effectiveness of Sentinel series data and the machine learning models in predicting canopy height. Therefore, in the absence of commercial and rare data sources, the methodology demonstrated here offers a plausible alternative for forest canopy height estimation.

2021 ◽  
Vol 13 (4) ◽  
pp. 641
Author(s):  
Gopal Ramdas Mahajan ◽  
Bappa Das ◽  
Dayesh Murgaokar ◽  
Ittai Herrmann ◽  
Katja Berger ◽  
...  

Conventional methods of plant nutrient estimation for nutrient management need a huge number of leaf or tissue samples and extensive chemical analysis, which is time-consuming and expensive. Remote sensing is a viable tool to estimate the plant’s nutritional status to determine the appropriate amounts of fertilizer inputs. The aim of the study was to use remote sensing to characterize the foliar nutrient status of mango through the development of spectral indices, multivariate analysis, chemometrics, and machine learning modeling of the spectral data. A spectral database within the 350–1050 nm wavelength range of the leaf samples and leaf nutrients were analyzed for the development of spectral indices and multivariate model development. The normalized difference and ratio spectral indices and multivariate models–partial least square regression (PLSR), principal component regression, and support vector regression (SVR) were ineffective in predicting any of the leaf nutrients. An approach of using PLSR-combined machine learning models was found to be the best to predict most of the nutrients. Based on the independent validation performance and summed ranks, the best performing models were cubist (R2 ≥ 0.91, the ratio of performance to deviation (RPD) ≥ 3.3, and the ratio of performance to interquartile distance (RPIQ) ≥ 3.71) for nitrogen, phosphorus, potassium, and zinc, SVR (R2 ≥ 0.88, RPD ≥ 2.73, RPIQ ≥ 3.31) for calcium, iron, copper, boron, and elastic net (R2 ≥ 0.95, RPD ≥ 4.47, RPIQ ≥ 6.11) for magnesium and sulfur. The results of the study revealed the potential of using hyperspectral remote sensing data for non-destructive estimation of mango leaf macro- and micro-nutrients. The developed approach is suggested to be employed within operational retrieval workflows for precision management of mango orchard nutrients.


2021 ◽  
Vol 172 ◽  
pp. 79-94
Author(s):  
Maryam Pourshamsi ◽  
Junshi Xia ◽  
Naoto Yokoya ◽  
Mariano Garcia ◽  
Marco Lavalle ◽  
...  

2021 ◽  
Author(s):  
Erik Otović ◽  
Marko Njirjak ◽  
Dario Jozinović ◽  
Goran Mauša ◽  
Alberto Michelini ◽  
...  

<p>In this study, we compared the performance of machine learning models trained using transfer learning and those that were trained from scratch - on time series data. Four machine learning models were used for the experiment. Two models were taken from the field of seismology, and the other two are general-purpose models for working with time series data. The accuracy of selected models was systematically observed and analyzed when switching within the same domain of application (seismology), as well as between mutually different domains of application (seismology, speech, medicine, finance). In seismology, we used two databases of local earthquakes (one in counts, and the other with the instrument response removed) and a database of global earthquakes for predicting earthquake magnitude; other datasets targeted classifying spoken words (speech), predicting stock prices (finance) and classifying muscle movement from EMG signals (medicine).<br>In practice, it is very demanding and sometimes impossible to collect datasets of tagged data large enough to successfully train a machine learning model. Therefore, in our experiment, we use reduced data sets of 1,500 and 9,000 data instances to mimic such conditions. Using the same scaled-down datasets, we trained two sets of machine learning models: those that used transfer learning for training and those that were trained from scratch. We compared the performances between pairs of models in order to draw conclusions about the utility of transfer learning. In order to confirm the validity of the obtained results, we repeated the experiments several times and applied statistical tests to confirm the significance of the results. The study shows when, within the set experimental framework, the transfer of knowledge brought improvements in terms of model accuracy and in terms of model convergence rate.<br><br>Our results show that it is possible to achieve better performance and faster convergence by transferring knowledge from the domain of global earthquakes to the domain of local earthquakes; sometimes also vice versa. However, improvements in seismology can sometimes also be achieved by transferring knowledge from medical and audio domains. The results show that the transfer of knowledge between other domains brought even more significant improvements, compared to those within the field of seismology. For example, it has been shown that models in the field of sound recognition have achieved much better performance compared to classical models and that the domain of sound recognition is very compatible with knowledge from other domains. We came to similar conclusions for the domains of medicine and finance. Ultimately, the paper offers suggestions when transfer learning is useful, and the explanations offered can provide a good starting point for knowledge transfer using time series data.</p>


2021 ◽  
Vol 13 (16) ◽  
pp. 3322
Author(s):  
Dan Li ◽  
Yuxin Miao ◽  
Sanjay K. Gupta ◽  
Carl J. Rosen ◽  
Fei Yuan ◽  
...  

Accurate high-resolution yield maps are essential for identifying spatial yield variability patterns, determining key factors influencing yield variability, and providing site-specific management insights in precision agriculture. Cultivar differences can significantly influence potato (Solanum tuberosum L.) tuber yield prediction using remote sensing technologies. The objective of this study was to improve potato yield prediction using unmanned aerial vehicle (UAV) remote sensing by incorporating cultivar information with machine learning methods. Small plot experiments involving different cultivars and nitrogen (N) rates were conducted in 2018 and 2019. UAV-based multi-spectral images were collected throughout the growing season. Machine learning models, i.e., random forest regression (RFR) and support vector regression (SVR), were used to combine different vegetation indices with cultivar information. It was found that UAV-based spectral data from the early growing season at the tuber initiation stage (late June) were more correlated with potato marketable yield than the spectral data from the later growing season at the tuber maturation stage. However, the best performing vegetation indices and the best timing for potato yield prediction varied with cultivars. The performance of the RFR and SVR models using only remote sensing data was unsatisfactory (R2 = 0.48–0.51 for validation) but was significantly improved when cultivar information was incorporated (R2 = 0.75–0.79 for validation). It is concluded that combining high spatial-resolution UAV images and cultivar information using machine learning algorithms can significantly improve potato yield prediction than methods without using cultivar information. More studies are needed to improve potato yield prediction using more detailed cultivar information, soil and landscape variables, and management information, as well as more advanced machine learning models.


Author(s):  
Jinhui Jeanne Huang ◽  
Hongwei Guo ◽  
Bowen Chen ◽  
Xiaolong Guo ◽  
Vijay P. Singh

Water quality retrieval for small urban waterbodies by remote sensing get used to be difficult due to coarse spatial resolution of the remote sensing imagery. The recently launched Sentinel-2 produces imagery with a spatial resolution of 10 m. It provides an opportunity to solve the problem of retrieving water quality for small waterbodies. Additionally, many water management issues also require fine resolution of imagery, e.g. illegal discharge to an urban waterbody. Since illegal discharges are an important issue for urban water management, chemical oxygen demand (COD), total phosphorous (TP), and total nitrogen (TN) were chosen as the target parameters for water quality retrieval in this study. COD, TP and TN, however, are non-optically active parameters. There were limited studies in the past to retrieve these parameters in comparison with optically active parameters, e.g. Chlorophyll-A etc. This study compared three machine learning models, namely Random Forest (RF), Support Vector Regression (SVR), and Neural Networks (NN), to investigate the opportunity to retrieve the above non-optically active parameters. Results showed that R2 of TP, TN, and COD by NN, RF and SVR were 0.94, 0.88, and 0.86, respectively. The performances of water quality retrieval for these non-optically active parameters were significantly improved by the optimized machine learning models. These models hence solved the problem to use remote sensing data to retrieve these non-optically active water quality parameters and provided a new monitoring strategy for small waterbodies. Water quality mapping obtained by Sentinel-2 imagery provided a full spatial coverage of the water quality characterization for the entire water surface. Compared with water samples collecting and testing, it greatly reduced labor cost, reagents cost, and waste treatment cost. It also may help identify illegal discharges to urban waterbodies. The method developed in this research provides a new practical and efficient water quality monitoring strategy in managing water with consideration of environmental sustainability.


Author(s):  
J. Rhee ◽  
J. Im ◽  
S. Park

The reduction of drought impacts may be achieved through sustainable drought management and proactive measures against drought disaster. Accurate and timely provision of drought information is essential. In this study, drought forecasting models to provide high-resolution drought information based on drought indicators for ungauged areas were developed. The developed models predict drought indices of the 6-month Standardized Precipitation Index (SPI6) and the 6-month Standardized Precipitation Evapotranspiration Index (SPEI6). An interpolation method based on multiquadric spline interpolation method as well as three machine learning models were tested. Three machine learning models of Decision Tree, Random Forest, and Extremely Randomized Trees were tested to enhance the provision of drought initial conditions based on remote sensing data, since initial conditions is one of the most important factors for drought forecasting. Machine learning-based methods performed better than interpolation methods for both classification and regression, and the methods using climatology data outperformed the methods using long-range forecast. The model based on climatological data and the machine learning method outperformed overall.


Sign in / Sign up

Export Citation Format

Share Document