scholarly journals Estimation of Canopy Gap Fraction from Terrestrial Laser Scanner Using an Angular Grid to Take Advantage of the Full Data Spatial Resolution

2020 ◽  
Vol 12 (10) ◽  
pp. 1596
Author(s):  
John Gajardo ◽  
David Riaño ◽  
Mariano García ◽  
Javier Salas ◽  
M. Pilar Martín

This paper develops an algorithm to estimate vegetation canopy gap fraction (GF), taking advantage of the full Terrestrial Laser Scanner (TLS) resolution. After calculating the TLS angular resolution, the algorithm identifies the missing laser hits (gaps) within an angular grid in the azimuthal and zenithal directions. The algorithm was first tested on angular data simulations with random (R), cluster (C) and random and cluster together (RC) gap pattern distributions. Noise introduced in the simulations as a percentage of the resolution accounted for the effect of TLS angular uncertainty. The algorithm performs accurately if angular noise is <6% of the angular resolution. To assess the impact of the change in projection, this study compared these GF estimates from angular grid simulations to their transformation into simulated hemispherical images (SHI). SHI with C patterns perform accurately, but R and RC patterns underestimate GF, especially for GF values below 0.6. The SHI performance to estimate GF was always far below the algorithm developed here with the angular grid simulations. When applied to actual TLS data acquired over individual Quercus ilex L. trees, the algorithm rendered a GF between 0.26 and 0.40. TLS had an angular noise <6%. Converting the angular grid into simulated HI (TLS-SHI) provided a better agreement with actual HI acquired in the same location as the TLS data, since they are in the same projection. The TLS-SHI underestimated GF by an average of 4% compared to HI. HI and TLS-SHI presented 14% and 17% lower values than the GF calculated from the angular grids, respectively. Nevertheless, the results from the simulations indicate that the algorithm based on the angular grid should be closer to the actual GF of the tree canopy.

2020 ◽  
Vol 12 (5) ◽  
pp. 829 ◽  
Author(s):  
Gaël Kermarrec ◽  
Boris Kargoll ◽  
Hamza Alkhatib

The choice of an appropriate metric is mandatory to perform deformation analysis between two point clouds (PC)—the distance has to be trustworthy and, simultaneously, robust against measurement noise, which may be correlated and heteroscedastic. The Hausdorff distance (HD) or its averaged derivation (AHD) are widely used to compute local distances between two PC and are implemented in nearly all commercial software. Unfortunately, they are affected by measurement noise, particularly when correlations are present. In this contribution, we focus on terrestrial laser scanner (TLS) observations and assess the impact of neglecting correlations on the distance computation when a mathematical approximation is performed. The results of the simulations are extended to real observations from a bridge under load. Highly accurate laser tracker (LT) measurements were available for this experiment: they allow the comparison of the HD and AHD between two raw PC or between their mathematical approximations regarding reference values. Based on these results, we determine which distance is better suited in the case of heteroscedastic and correlated TLS observations for local deformation analysis. Finally, we set up a novel bootstrap testing procedure for this distance when the PC are approximated with B-spline surfaces.


2017 ◽  
Vol 11 (03) ◽  
pp. 1 ◽  
Author(s):  
Donghui Xie ◽  
Yan Wang ◽  
Ronghai Hu ◽  
Yiming Chen ◽  
Guangjian Yan ◽  
...  

Plant Disease ◽  
2019 ◽  
Vol 103 (12) ◽  
pp. 3218-3225 ◽  
Author(s):  
N. H. Azuan ◽  
S. Khairunniza-Bejo ◽  
A. F. Abdullah ◽  
M. S. M. Kassim ◽  
D. Ahmad

Basal stem rot (BSR), caused by the Ganoderma fungus, is an infectious disease that affects oil palm (Elaeis guineensis) plantations. BSR leads to a significant economic loss and reductions in yields of up to Malaysian Ringgit (RM) 1.5 billion (US$400 million) yearly. By 2020, the disease may affect ∼1.7 million tonnes of fresh fruit bunches. The plants appear symptomless in the early stages of infection, although most plants die after they are infected. Thus, early, accurate, and nondestructive disease detection is crucial to control the impact of the disease on yields. Terrestrial laser scanning (TLS) is an active remote-sensing, noncontact, cost-effective, precise, and user-friendly method. Through high-resolution scanning of a tree’s dimension and morphology, TLS offers an accurate indicator for health and development. This study proposes an efficient image processing technique using point clouds obtained from TLS ground input data. A total of 40 samples (10 samples for each severity level) of oil palm trees were collected from 9-year-old trees using a ground-based laser scanner. Each tree was scanned four times at a distance of 1.5 m. The recorded laser scans were synched and merged to create a cluster of point clouds. An overhead two-dimensional image of the oil palm tree canopy was used to analyze three canopy architectures in terms of the number of pixels inside the crown (crown pixel), the degree of angle between fronds (frond angle), and the number of fronds (frond number). The results show that the crown pixel, frond angle, and frond number are significantly related and that the BSR severity levels are highly correlated (R2 = 0.76, P < 0.0001; R2 = 0.96, P < 0.0001; and R2 = 0.97, P < 0.0001, respectively). Analysis of variance followed post hoc tests by Student–Newman–Keuls (Newman–Keuls) and Dunnett for frond number presented the best results and showed that all levels were significantly different at a 5% significance level. Therefore, the earliest stage that a Ganoderma infection could be detected was mildly infected (T1). For frond angle, all post hoc tests showed consistent results, and all levels were significantly separated except for T0 and T1. By using the crown pixel parameter, healthy trees (T0) were separated from unhealthy trees (moderate infection [T2] and severe infection [T3]), although there was still some overlap with T1. Thus, Ganoderma infection could be detected as early as the T2 level by using the crown pixel and the frond angle parameters. It is hard to differentiate between T0 and T1, because during mild infection, the symptoms are highly similar. Meanwhile, T2 and T3 were placed in the same group, because they showed the same trend. This study demonstrates that the TLS is useful for detecting low-level infection as early as T1 (mild severity). TLS proved beneficial in managing oil palm plantation disease.


Author(s):  
Nikolay Lugovoy ◽  
Nikolay Lugovoy ◽  
Askar Ilyasov ◽  
Askar Ilyasov ◽  
Elena Pronina ◽  
...  

The paper describes application of the terrestrial laser scanner for investigation of coastal dynamics of the Svetlogorskaya Bay, Baltic Sea. Methods of investigation and results of surveys repeated over the two consecutive years for quantification of coastal erosion and slope processes within the coastal zone are presented.


2020 ◽  
Author(s):  
Collin Megee ◽  
◽  
Michael O'Neal ◽  
Joseph Clemens ◽  
Erica McMaster ◽  
...  

2021 ◽  
Vol 13 (13) ◽  
pp. 2494
Author(s):  
Gaël Kermarrec ◽  
Niklas Schild ◽  
Jan Hartmann

T-splines have recently been introduced to represent objects of arbitrary shapes using a smaller number of control points than the conventional non-uniform rational B-splines (NURBS) or B-spline representatizons in computer-aided design, computer graphics and reverse engineering. They are flexible in representing complex surface shapes and economic in terms of parameters as they enable local refinement. This property is a great advantage when dense, scattered and noisy point clouds are approximated using least squares fitting, such as those from a terrestrial laser scanner (TLS). Unfortunately, when it comes to assessing the goodness of fit of the surface approximation with a real dataset, only a noisy point cloud can be approximated: (i) a low root mean squared error (RMSE) can be linked with an overfitting, i.e., a fitting of the noise, and should be correspondingly avoided, and (ii) a high RMSE is synonymous with a lack of details. To address the challenge of judging the approximation, the reference surface should be entirely known: this can be solved by printing a mathematically defined T-splines reference surface in three dimensions (3D) and modeling the artefacts induced by the 3D printing. Once scanned under different configurations, it is possible to assess the goodness of fit of the approximation for a noisy and potentially gappy point cloud and compare it with the traditional but less flexible NURBS. The advantages of T-splines local refinement open the door for further applications within a geodetic context such as rigorous statistical testing of deformation. Two different scans from a slightly deformed object were approximated; we found that more than 40% of the computational time could be saved without affecting the goodness of fit of the surface approximation by using the same mesh for the two epochs.


Sign in / Sign up

Export Citation Format

Share Document