scholarly journals The Evolution of Wide-Area DInSAR: From Regional and National Services to the European Ground Motion Service

2020 ◽  
Vol 12 (12) ◽  
pp. 2043 ◽  
Author(s):  
Michele Crosetto ◽  
Lorenzo Solari ◽  
Marek Mróz ◽  
Joanna Balasis-Levinsen ◽  
Nicola Casagli ◽  
...  

This study is focused on wide-area deformation monitoring initiatives based on the differential interferometric SAR technique (DInSAR). In particular, it addresses the use of advanced DInSAR (A-DInSAR) techniques, which are based on large sets of synthetic aperture radar (SAR) and Copernicus Sentinel-1 images. Such techniques have undergone a dramatic development in the last twenty years: they are now capable to process big sets of SAR images and can be exploited to realize a wide-area A-DInSAR monitoring. The study describes several initiatives to establish wide-area ground motion services (GMS), both at county- and region-level. In the second part of the study, some of the key technical aspects related to wide-area A-DInSAR monitoring are discussed. Finally, the last part of the study is devoted to the European ground motion service (EGMS), which is part of the Copernicus land monitoring service. It represents the most important wide-area A-DInSAR deformation monitoring system ever developed. The study describes its main characteristics and its main products. The end of the production of the first EGMS baseline product is foreseen for the last quarter of 2021.

Author(s):  
M. Crosetto ◽  
L. Solari ◽  
J. Balasis-Levinsen ◽  
L. Bateson ◽  
N. Casagli ◽  
...  

Abstract. The Advanced Differential Interferometric SAR (A-DInSAR) technique is a class of powerful techniques to monitor ground motion. In the last two decades, the A-DInSAR technique has undergone an important development in terms of processing algorithms and the capability to monitor wide areas. This has been accompanied by an important increase of the Synthetic Aperture Radar (SAR) data acquisition capability by spaceborne sensors. An important step forward was the launch of the Copernicus Sentinel-1 constellation. The development of A-DInSAR based ground deformation services is now technically feasible. This paper describes some of the most important features of A-DInSAR. Then, it describes the European Ground Motion Service (EGMS), part of the Copernicus Land Monitoring Service, which represents a unique initiative for performing ground deformation monitoring on a European scale.


2019 ◽  
Vol 11 (11) ◽  
pp. 1306
Author(s):  
Alessandra Budillon ◽  
Michele Crosetto ◽  
Oriol Monserrat

This Special Issue hosts papers related to deformation monitoring in urban areas based on two main techniques: Persistent Scatterer Interferometry (PSI) and Synthetic Aperture Radar (SAR) Tomography (TomoSAR). Several contributions highlight the capabilities of Interferometric SAR (InSAR) and PSI techniques for urban deformation monitoring. In this Special Issue, a wide range of InSAR and PSI applications are addressed. Some contributions show the advantages of TomoSAR in un-mixing multiple scatterers for urban mapping and monitoring. This issue includes a contribution that compares PSI and TomoSAR and another one that uses polarimetric data for TomoSAR.


2012 ◽  
Vol 204-208 ◽  
pp. 1754-1757
Author(s):  
Xue Min Xing

In the algorithm of Corner Reflector Interferometric Synthetic Aperture Radar (CR-InSAR), the identification of Corner Reflector (CR) points in SAR images is necessary. Due to the uncertainty of traditional method in estimating the row and column information of CR, this paper presents a method for CR points’ identification, which is based on the intensity and correlation coefficient. The method has been successfully used to find the CR points in the six SAR images of the study area where the identification of CR points installed along a high way is difficult. The results show that the method presented is effective and reliable which will play important role in the deformation monitoring in highway using CR-InSAR algorithm.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1643
Author(s):  
Ming Liu ◽  
Shichao Chen ◽  
Fugang Lu ◽  
Mengdao Xing ◽  
Jingbiao Wei

For target detection in complex scenes of synthetic aperture radar (SAR) images, the false alarms in the land areas are hard to eliminate, especially for the ones near the coastline. Focusing on the problem, an algorithm based on the fusion of multiscale superpixel segmentations is proposed in this paper. Firstly, the SAR images are partitioned by using different scales of superpixel segmentation. For the superpixels in each scale, the land-sea segmentation is achieved by judging their statistical properties. Then, the land-sea segmentation results obtained in each scale are combined with the result of the constant false alarm rate (CFAR) detector to eliminate the false alarms located on the land areas of the SAR image. In the end, to enhance the robustness of the proposed algorithm, the detection results obtained in different scales are fused together to realize the final target detection. Experimental results on real SAR images have verified the effectiveness of the proposed algorithm.


2020 ◽  
Vol 39 (4) ◽  
pp. 5311-5318
Author(s):  
Zhengquan Hu ◽  
Yu Liu ◽  
Xiaowei Niu ◽  
Guoping Lei

As aerospace technology, computer technology, network communication technology and information technology become more and more perfect, a variety of sensors for measurement and remote sensing are constantly emerging, and the ability to acquire remote sensing data is also continuously enhanced. Synthetic Aperture Radar Interferometry (InSAR) technology greatly expands the function and application field of imaging radar. Differential InSAR (DInSAR) developed based on InSAR technology has the advantages of high precision and all-weather compared with traditional measurement methods. However, DInSAR-based deformation monitoring is susceptible to spatiotemporal coherence, orbital errors, atmospheric delays, and elevation errors. Since phase noise is the main error of InSAR, to determine the appropriate filtering parameters, an iterative adaptive filtering method for interferogram is proposed. For the limitation of conventional DInSAR, to improve the accuracy of deformation monitoring as much as possible, this paper proposes a deformation modeling based on ridge estimation and regularization as a constraint condition, and introduces a variance component estimation to optimize the deformation results. The simulation experiment of the iterative adaptive filtering method and the deformation modeling proposed in this paper shows that the deformation information extraction method based on differential synthetic aperture radar has high precision and feasibility.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3580 ◽  
Author(s):  
Jie Wang ◽  
Ke-Hong Zhu ◽  
Li-Na Wang ◽  
Xing-Dong Liang ◽  
Long-Yong Chen

In recent years, multi-input multi-output (MIMO) synthetic aperture radar (SAR) systems, which can promote the performance of 3D imaging, high-resolution wide-swath remote sensing, and multi-baseline interferometry, have received considerable attention. Several papers on MIMO-SAR have been published, but the research of such systems is seriously limited. This is mainly because the superposed echoes of the multiple transmitted orthogonal waveforms cannot be separated perfectly. The imperfect separation will introduce ambiguous energy and degrade SAR images dramatically. In this paper, a novel orthogonal waveform separation scheme based on echo-compression is proposed for airborne MIMO-SAR systems. Specifically, apart from the simultaneous transmissions, the transmitters are required to radiate several times alone in a synthetic aperture to sense their private inner-aperture channels. Since the channel responses at the neighboring azimuth positions are relevant, the energy of the solely radiated orthogonal waveforms in the superposed echoes will be concentrated. To this end, the echoes of the multiple transmitted orthogonal waveforms can be separated by cancelling the peaks. In addition, the cleaned echoes, along with original superposed one, can be used to reconstruct the unambiguous echoes. The proposed scheme is validated by simulations.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3377 ◽  
Author(s):  
Jifang Pei ◽  
Yulin Huang ◽  
Weibo Huo ◽  
Yuxuan Miao ◽  
Yin Zhang ◽  
...  

Finding out interested targets from synthetic aperture radar (SAR) imagery is an attractive but challenging problem in SAR application. Traditional target detection is independent on SAR imaging process, which is purposeless and unnecessary. Hence, a new SAR processing approach for simultaneous target detection and image formation is proposed in this paper. This approach is based on SAR imagery formation in time domain and human visual saliency detection. First, a series of sub-aperture SAR images with resolutions from low to high are generated by the time domain SAR imaging method. Then, those multiresolution SAR images are detected by the visual saliency processing, and the corresponding intermediate saliency maps are obtained. The saliency maps are accumulated until the result with a sufficient confidence level. After some screening operations, the target regions on the imaging scene are located, and only these regions are focused with full aperture integration. Finally, we can get the SAR imagery with high-resolution detected target regions but low-resolution clutter background. Experimental results have shown the superiority of the proposed approach for simultaneous target detection and image formation.


Sign in / Sign up

Export Citation Format

Share Document