scholarly journals Spatial Attraction Models Coupled with Elman Neural Networks for Enhancing Sub-Pixel Urban Inundation Mapping

2020 ◽  
Vol 12 (13) ◽  
pp. 2068
Author(s):  
Linyi Li ◽  
Yun Chen ◽  
Tingbao Xu ◽  
Lingkui Meng ◽  
Chang Huang ◽  
...  

Urban flooding is one of the most costly and destructive natural hazards worldwide. Remote-sensing images with high temporal resolutions have been extensively applied to timely inundation monitoring, assessing and mapping, but are limited by their low spatial resolution. Sub-pixel mapping has drawn great attention among researchers worldwide and has demonstrated a promising potential of high-accuracy mapping of inundation. Aimed to boost sub-pixel urban inundation mapping (SUIM) from remote-sensing imagery, a new algorithm based on spatial attraction models and Elman neural networks (SAMENN) was developed and examined in this paper. The Elman neural networks (ENN)-based SUIM module was developed firstly. Then a normalized edge intensity index of mixed pixels was generated. Finally the algorithm of SAMENN-SUIM was constructed and implemented. Landsat 8 images of two cities of China, which experienced heavy floods, were used in the experiments. Compared to three traditional SUIM methods, SAMENN-SUIM attained higher mapping accuracy according not only to visual evaluations but also quantitative assessments. The effects of normalized edge intensity index threshold and neuron number of the hidden layer on accuracy of the SAMENN-SUIM algorithm were analyzed and discussed. The newly developed algorithm in this study made a positive contribution to advancing urban inundation mapping from remote-sensing images with medium-low spatial resolutions, and hence can favor urban flood monitoring and risk assessment.

2019 ◽  
Vol 11 (10) ◽  
pp. 1231 ◽  
Author(s):  
Linyi Li ◽  
Yun Chen ◽  
Tingbao Xu ◽  
Kaifang Shi ◽  
Rui Liu ◽  
...  

Wetland flooding is significant for the flora and fauna of wetlands. High temporal resolution remote sensing images are widely used for the timely mapping of wetland flooding but have a limitation of their relatively low spatial resolutions. In this study, a novel method based on random forests and spatial attraction models (RFSAM) was proposed to improve the accuracy of sub-pixel mapping of wetland flooding (SMWF) using remote sensing images. A random forests-based SMWF algorithm (RM-SMWF) was developed firstly, and a comprehensive complexity index of a mixed pixel was formulated. Then the RFSAM-SMWF method was developed. Landsat 8 Operational Land Imager (OLI) images of two wetlands of international importance included in the Ramsar List were used to evaluate RFSAM-SMWF against three other SMWF methods, and it consistently achieved more accurate sub-pixel mapping results in terms of visual and quantitative assessments in the two wetlands. The effects of the number of trees in random forests and the complexity threshold on the mapping accuracy of RFSAM-SMWF were also discussed. The results of this study improve the mapping accuracy of wetland flooding from medium-low spatial resolution remote sensing images and therefore benefit the environmental studies of wetlands.


2021 ◽  
Vol 26 (1) ◽  
pp. 200-215
Author(s):  
Muhammad Alam ◽  
Jian-Feng Wang ◽  
Cong Guangpei ◽  
LV Yunrong ◽  
Yuanfang Chen

AbstractIn recent years, the success of deep learning in natural scene image processing boosted its application in the analysis of remote sensing images. In this paper, we applied Convolutional Neural Networks (CNN) on the semantic segmentation of remote sensing images. We improve the Encoder- Decoder CNN structure SegNet with index pooling and U-net to make them suitable for multi-targets semantic segmentation of remote sensing images. The results show that these two models have their own advantages and disadvantages on the segmentation of different objects. In addition, we propose an integrated algorithm that integrates these two models. Experimental results show that the presented integrated algorithm can exploite the advantages of both the models for multi-target segmentation and achieve a better segmentation compared to these two models.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4115 ◽  
Author(s):  
Yuxia Li ◽  
Bo Peng ◽  
Lei He ◽  
Kunlong Fan ◽  
Zhenxu Li ◽  
...  

Roads are vital components of infrastructure, the extraction of which has become a topic of significant interest in the field of remote sensing. Because deep learning has been a popular method in image processing and information extraction, researchers have paid more attention to extracting road using neural networks. This article proposes the improvement of neural networks to extract roads from Unmanned Aerial Vehicle (UAV) remote sensing images. D-Linknet was first considered for its high performance; however, the huge scale of the net reduced computational efficiency. With a focus on the low computational efficiency problem of the popular D-LinkNet, this article made some improvements: (1) Replace the initial block with a stem block. (2) Rebuild the entire network based on ResNet units with a new structure, allowing for the construction of an improved neural network D-Linknetplus. (3) Add a 1 × 1 convolution layer before DBlock to reduce the input feature maps, reducing parameters and improving computational efficiency. Add another 1 × 1 convolution layer after DBlock to recover the required number of output channels. Accordingly, another improved neural network B-D-LinknetPlus was built. Comparisons were performed between the neural nets, and the verification were made with the Massachusetts Roads Dataset. The results show improved neural networks are helpful in reducing the network size and developing the precision needed for road extraction.


2021 ◽  
Vol 9 (1) ◽  
pp. 47-70
Author(s):  
Kumar Gaurav ◽  
François Métivier ◽  
Rajiv Sinha ◽  
Amit Kumar ◽  
Sampat Kumar Tandon ◽  
...  

Abstract. We propose an innovative methodology to estimate the formative discharge of alluvial rivers from remote sensing images. This procedure involves automatic extraction of the width of a channel from Landsat Thematic Mapper, Landsat 8, and Sentinel-1 satellite images. We translate the channel width extracted from satellite images to discharge using a width–discharge regime curve established previously by us for the Himalayan rivers. This regime curve is based on the threshold theory, a simple physical force balance that explains the first-order geometry of alluvial channels. Using this procedure, we estimate the formative discharge of six major rivers of the Himalayan foreland: the Brahmaputra, Chenab, Ganga, Indus, Kosi, and Teesta rivers. Except highly regulated rivers (Indus and Chenab), our estimates of the discharge from satellite images can be compared with the mean annual discharge obtained from historical records of gauging stations. We have shown that this procedure applies both to braided and single-thread rivers over a large territory. Furthermore, our methodology to estimate discharge from remote sensing images does not rely on continuous ground calibration.


2020 ◽  
Author(s):  
Jing-Bo Xue ◽  
Xin-Yi Wang ◽  
Li-Juan Zhang ◽  
Yu-Wan Hao ◽  
Zhe Chen ◽  
...  

Abstract BackgroundFlooding may be the most important factors contributing to the rebound of Oncomelania hupensis in endemic foci. This study aimed to assess the risk of schistosomiasis japonica transmission impacted by flooding around the Poyang Lake region using multi-source remote sensing images.MethodsNormalized Difference Vegetation Index (NDVI) data collected by the Landsat 8 satellite was used as an ecological and geographical suitability indicator of O. hupensis snail habitats in the Poyang Lake region. The flood-affected water body expansion was estimated using dual polarized threshold calculations based on the dual polarized synthetic aperture radar (SAR). The image data were captured from Sentinel-1B satellite in May 2020 before the flood and in July 2020 during the flood. The spatial database of snail habitats distribution was created by using the 2016 snail survey in Jiangxi Province. The potential spread of O. hupensis snails after the flood was predicted by an overlay analysis of the NDVI maps of flood-affected water body areas. In addition, the risk of schistosomiasis transmission was classified based on O. hupensis snail density data and the related NDVI. ResultsThe surface area of Poyang Lake was approximately 2,207 km2 in May 2020 before the flood and 4,403 km2 in July 2020 during the period of the flood peak, and the flood-caused expansion of water body was estimated as 99.5%. After the flood, the potential snail habitats were predicted to be concentrated in areas neighboring the existing habitats in marshlands of the Poyang Lake. The areas with high risk of schistosomiasis transmission were predicted to be mainly distributed in Yongxiu, Xinjian, Yugan and Poyang (District) along Poyang Lake. By comparing the predictive results and actual snail distribution, the predictive accuracy of the model was estimated as 87%, which meant the 87% of actual snail distribution were correctly identified as the snail habitats in the model predictions. ConclusionsFlood-affected water body expansion and environmental factors pertaining to snail breeding may be rapidly extracted from Landsat 8 and Sentinel-1B remote sensing images. The applications of multi-source remote sensing data are feasible for the timely and effective assessment of the potential schistosomiasis transmission risk caused by snail spread during the flood disaster, which is of great significance for precision control of schistosomiasis.


Sign in / Sign up

Export Citation Format

Share Document