scholarly journals Geolocation Correction for Geostationary Satellite Observations by a Phase-Only Correlation Method Using a Visible Channel

2020 ◽  
Vol 12 (15) ◽  
pp. 2472
Author(s):  
Hideaki Takenaka ◽  
Taiyou Sakashita ◽  
Atsushi Higuchi ◽  
Teruyuki Nakajima

This study describes a high-speed correction method for geolocation information of geostationary satellite data for accurate physical analysis. Geostationary satellite observations with high temporal resolution provide instantaneous analysis and prompt reports. We have previously reported the quasi real-time analysis of solar radiation at the surface and top of the atmosphere using geostationary satellite data. Estimating atmospheric parameters and surface albedo requires accurate geolocation information to estimate the solar radiation accurately. The physical analysis algorithm for Earth observations is verified by the ground truth. In particular, downward solar radiation at the surface is validated by pyranometers installed at ground observation sites. The ground truth requires that the satellite observation data pixels be accurately linked to the location of the observation equipment on the ground. Thus, inaccurate geolocation information disrupts verification and causes complex problems. It is difficult to determine whether error in the validation of physical quantities arises from the estimation algorithm, satellite sensor calibration, or a geolocation problem. Geolocation error hinders the development of accurate analysis algorithms; therefore, accurate observational information with geolocation information based on latitude and longitude is crucial in atmosphere and land target analysis. This method provides the basic data underlying physical analysis, parallax correction, etc. Because the processing speed is important in geolocation correction, we used the phase-only correlation (POC) method, which is fast and maintains the accuracy of geolocation information in geostationary satellite observation data. Furthermore, two-dimensional fast Fourier transform allowed the accurate correction of multiple target points, which improved the overall accuracy. The reference dataset was created using NASA’s Shuttle Radar Topography Mission 1-s mesh data. We used HIMAWARI-8/Advanced HIMAWARI Imager data to demonstrate our method, with 22,709 target points for every 10-min observation and 5826 points for every 2.5 min observation. Despite the presence of disturbances, the POC method maintained its accuracy. Column offset and line offset statistics showed stability and characteristic error trends in the raw HIMAWARI standard data. Our method was sufficiently fast to apply to quasi real-time analysis of solar radiation every 10 and 2.5 min. Although HIMAWARI-8 is used as an example here, our method is applicable to all geostationary satellites. The corrected HIMAWARI 16 channel gridded dataset is available from the open database of the Center for Environmental Remote Sensing (CEReS), Chiba University, Japan. The total download count was 50,352,443 on 8 July 2020. Our method has already been applied to NASA GeoNEX geostationary satellite products.

2021 ◽  
Vol 8 (2) ◽  
pp. 21-26
Author(s):  
Iryna Sosonka

Using GNSS for many years is the most common technology for the collection, processing, and interpretation of Earth observation data, in particular for the high-precision study of plate tectonics. The results of GNSS observations, such as coordinate time series, allow us to do continuous monitoring of stations, and modern methods of satellite observation processing provide high-precision results for geodynamic interpretation. The aim of our study is to process the results of observations by DD and PPP methods and determine the degree of correlation between GNSS stations based on coordinate time series. For our study, we selected 10 GNSS stations, which merged into two networks - Lviv (SAMB, STOY, STRY, SULP та ZLRS) and Ukrainian (BCRV, CHTK, CNIV, CRNI, GLSV та SULP). The duration of observations on each of them is about 1.5 years (2019-2020). The downloaded observation files were processed in two software packages: Gamit and GipsyX. After applying the «cleaned» procedures based on the iGPS software package, the residual time series were obtained and the coefficients of the interstation correlation matrices were calculated. After the procedure of "cleaning" the time series, we obtained the RMS value decrease for all components of the coordinates by an average of 7-30%, and some stations by 55%. Based on the obtained RMS values, we can conclude that the influence of unextracted or incorrectly modeled errors can significantly affect the results of satellite observations. The obtained interstation correlation coefficients for both networks show different results depending on the used method for processing satellite observations. The larger correlation values of the DD method can be explained by the fact that the effect of errors is distributed evenly to all network stations, whereas in the PPP method errors for each station are individual. The obtained graphs of the common-mode errors values, after their removal from the residual time series, confirm the more uniform nature of the DD method. The results of our study indicate the feasibility of using the PPP method, as the autonomous processing of stations allows you to see the real geodynamic picture of the studied region.


1970 ◽  
Vol 8 (3) ◽  
pp. 32-41
Author(s):  
Itsara Masiri ◽  
Serm Janjai ◽  
Treenuch Jantarach

An algorithm was developed to estimate aerosol optical depth (AOD) from geostationary satellite data. The 6S radiative transfer computer code was employed to generate a look-up table (LUT) which incorporates several combinations of satellite-derived variables including earthatmospheric reflectivity, atmospheric reflectivity and surface albedo. The parameterization of the satellite-derived atmospheric reflectivity accounted for the scattering of solar radiation by clouds, absorption of solar radiation by water vapour, ozone and gases and solar radiation depletion by aerosols. The digital data of the MTSAT-1R satellite were used as the main input of the algorithm. For the validation, the values of AOD derived from this algorithm were compared with those obtained from four sites of Aerosol Robotic Network (AERONET) in Thailand, and a reasonable agreement was found. DOI: http://dx.doi.org/10.3126/jie.v8i3.5929 JIE 2011; 8(3): 32-41


Author(s):  
R.P. Goehner ◽  
W.T. Hatfield ◽  
Prakash Rao

Computer programs are now available in various laboratories for the indexing and simulation of transmission electron diffraction patterns. Although these programs address themselves to the solution of various aspects of the indexing and simulation process, the ultimate goal is to perform real time diffraction pattern analysis directly off of the imaging screen of the transmission electron microscope. The program to be described in this paper represents one step prior to real time analysis. It involves the combination of two programs, described in an earlier paper(l), into a single program for use on an interactive basis with a minicomputer. In our case, the minicomputer is an INTERDATA 70 equipped with a Tektronix 4010-1 graphical display terminal and hard copy unit.A simplified flow diagram of the combined program, written in Fortran IV, is shown in Figure 1. It consists of two programs INDEX and TEDP which index and simulate electron diffraction patterns respectively. The user has the option of choosing either the indexing or simulating aspects of the combined program.


Sign in / Sign up

Export Citation Format

Share Document