scholarly journals Mapping Aboveground Woody Biomass on Abandoned Agricultural Land Based on Airborne Laser Scanning Data

2020 ◽  
Vol 12 (24) ◽  
pp. 4189
Author(s):  
Ivan Sačkov ◽  
Ivan Barka ◽  
Tomáš Bucha

Mapping aboveground woody biomass (AGB) on abandoned agricultural land (AAL) is required by relevant stakeholders to monitor the spatial dynamics of farmland afforestation, to assess the carbon sequestration, and to set the appropriate management of natural resources. The objective of this study was, therefore, to present and assess a workflow consisting of (1) the spatial identification of AAL based on a combination of airborne laser scanning (ALS) data, cadastral data, and Land Parcel Identification System data, and (2) the prediction of AGB on AAL using an area-based approach and a nonparametric random forest (RF) model based on a combination of field and ALS data. Part of the second objective was also to evaluate the applicability of (1) the author-developed algorithm for the calculation of ALS metrics and (2) a single comprehensive RF model for the whole area of interest. The study was conducted in the forest management unit Vígľaš (Slovakia, Central Europe) covering a total area of 12,472 ha. Specifically, five reference areas consisting of 11,194 reference points were used to assess the accuracy of the spatial identification of AAL, and seventy-five ground reference plots were used for the development of the ALS-based AGB model and for assessing the accuracy of the AGB map. The overall accuracy of the spatial identification of AAL was found to be 93.00% (Cohen’s kappa = 0.82). The difference between ALS-predicted and ground-observed AGB reached a relative root mean square error (RMSE) at 26.1%, 33.1%, and 21.3% for the whole sample size, plots dominated by shrub species, and plots dominated by tree species, respectively.

2013 ◽  
Vol 59 (1) ◽  
pp. 45-58
Author(s):  
Marta Mõistus ◽  
Mait Lang ◽  
Allan Sims

Abstract The abandonment of agricultural land is an actual problem in Estonia due to significant impact on landscape ecology and structure. Abandoned agricultural fields are usually converting into forest. Mapping of agricultural land use is a strategic interest of each country. Airborne laser scanning (ALS) is used in many countries for topographical mapping and the laser pulse return positions are promising datasets for mapping the abandonment of agricultural land. We used ALS data based woody plant canopy cover estimates made at certain reference height unachievable for field crops to map abandoned agricultural land in nine test sites in Tartumaa, Estonia. The maximum height of trees in test sites ranged from 6.5 m to 13.4 m. The lidar pulse returns based canopy cover estimate was assessed 1) by using ortophoto based digitized maps of tree canopy, 2) repeated measurements made with plant canopy analyzer LAI-2000 and 3) by using allometric crown radius models and repeated tree measurements from sample plots. The interpretation of canopy boundaries and separation of small spaces between tree crowns from ortophotos is a challenging task for an operator. The relationship between ALS based canopy cover and ortophoto based canopy cover was linear in all test sites except when ALS data from beginning of June were used. It the beginning of June foliage is not fully developed on trees. An increase in the woody canopy cover was detected from repeated LAI-2000 measurements and also from repeated tree measurements-based simulated crowns. The impact of reference height change from 2.0 m to 1.3 m on canopy cover estimations was not significant and much smaller compared to the tree growth induced increase in canopy cover, indicating that similar errors originating from e.g. digital elevation model are not problematic for the proposed method in practical applications.


Author(s):  
B. Székely ◽  
A. Kania ◽  
T. Standovár ◽  
H. Heilmeier

The horizontal variation and vertical layering of the vegetation are important properties of the canopy structure determining the habitat; three-dimensional (3D) distribution of objects (shrub layers, understory vegetation, etc.) is related to the environmental factors (e.g., illumination, visibility). It has been shown that gaps in forests, mosaic-like structures are essential to biodiversity; various methods have been introduced to quantify this property. As the distribution of gaps in the vegetation is a multi-scale phenomenon, in order to capture it in its entirety, scale-independent methods are preferred; one of these is the calculation of lacunarity. <br><br> We used Airborne Laser Scanning point clouds measured over a forest plantation situated in a former floodplain. The flat topographic relief ensured that the tree growth is independent of the topographic effects. The tree pattern in the plantation crops provided various quasi-regular and irregular patterns, as well as various ages of the stands. The point clouds were voxelized and layers of voxels were considered as images for two-dimensional input. These images calculated for a certain vicinity of reference points were taken as images for the computation of lacunarity curves, providing a stack of lacunarity curves for each reference points. These sets of curves have been compared to reveal spatial changes of this property. As the dynamic range of the lacunarity values is very large, the natural logarithms of the values were considered. Logarithms of lacunarity functions show canopy-related variations, we analysed these variations along transects. The spatial variation can be related to forest properties and ecology-specific aspects.


2012 ◽  
Vol 4 (2) ◽  
pp. 213-220
Author(s):  
Keiko Ioki ◽  
Junichi Imanishi ◽  
Takeshi Sasaki ◽  
Youngkeun Song ◽  
Yukihiro Morimoto

Author(s):  
B. Székely ◽  
A. Kania ◽  
T. Standovár ◽  
H. Heilmeier

The horizontal variation and vertical layering of the vegetation are important properties of the canopy structure determining the habitat; three-dimensional (3D) distribution of objects (shrub layers, understory vegetation, etc.) is related to the environmental factors (e.g., illumination, visibility). It has been shown that gaps in forests, mosaic-like structures are essential to biodiversity; various methods have been introduced to quantify this property. As the distribution of gaps in the vegetation is a multi-scale phenomenon, in order to capture it in its entirety, scale-independent methods are preferred; one of these is the calculation of lacunarity. &lt;br&gt;&lt;br&gt; We used Airborne Laser Scanning point clouds measured over a forest plantation situated in a former floodplain. The flat topographic relief ensured that the tree growth is independent of the topographic effects. The tree pattern in the plantation crops provided various quasi-regular and irregular patterns, as well as various ages of the stands. The point clouds were voxelized and layers of voxels were considered as images for two-dimensional input. These images calculated for a certain vicinity of reference points were taken as images for the computation of lacunarity curves, providing a stack of lacunarity curves for each reference points. These sets of curves have been compared to reveal spatial changes of this property. As the dynamic range of the lacunarity values is very large, the natural logarithms of the values were considered. Logarithms of lacunarity functions show canopy-related variations, we analysed these variations along transects. The spatial variation can be related to forest properties and ecology-specific aspects.


Author(s):  
E. Ahokas ◽  
H. Kaartinen ◽  
A. Kukko ◽  
P. Litkey

Airborne laser scanning (ALS) is a widely spread operational measurement tool for obtaining 3D coordinates of the ground surface. There is a need for calibrating the ALS system and a test field for ALS was established at the end of 2013. The test field is situated in the city of Lahti, about 100 km to the north of Helsinki. The size of the area is approximately 3.5 km &times; 3.2 km. Reference data was collected with a mobile laser scanning (MLS) system assembled on a car roof. Some streets were measured both ways and most of them in one driving direction only. The MLS system of the Finnish Geodetic Institute (FGI) consists of a navigation system (NovAtel SPAN GNSS-IMU) and a laser scanner (FARO Focus3D 120). In addition to the MLS measurements more than 800 reference points were measured using a Trimble R8 VRS-GNSS system. Reference points are along the streets, on parking lots, and white pedestrian crossing line corners which can be used as reference targets. The National Land Survey of Finland has already used this test field this spring for calibrating their Leica ALS-70 scanner. Especially it was easier to determine the encoder scale factor parameter using this test field. Accuracy analysis of the MLS points showed that the point height RMSE is 2.8 cm and standard deviation is 2.6 cm. Our purpose is to measure both more MLS data and more reference points in the test field area to get a better spatial coverage. Calibration flight heights are planned to be 1000 m and 2500 m above ground level. A cross pattern, southwest&ndash;northeast and northwest&ndash;southeast, will be flown both in opposite directions.


2011 ◽  
Vol 5 (3) ◽  
pp. 196-208 ◽  
Author(s):  
D. F. Laefer ◽  
T. Hinks ◽  
H. Carr ◽  
L. Truong-Hong

2021 ◽  
Vol 13 (4) ◽  
pp. 1917
Author(s):  
Alma Elizabeth Thuestad ◽  
Ole Risbøl ◽  
Jan Ingolf Kleppe ◽  
Stine Barlindhaug ◽  
Elin Rose Myrvoll

What can remote sensing contribute to archaeological surveying in subarctic and arctic landscapes? The pros and cons of remote sensing data vary as do areas of utilization and methodological approaches. We assessed the applicability of remote sensing for archaeological surveying of northern landscapes using airborne laser scanning (LiDAR) and satellite and aerial images to map archaeological features as a basis for (a) assessing the pros and cons of the different approaches and (b) assessing the potential detection rate of remote sensing. Interpretation of images and a LiDAR-based bare-earth digital terrain model (DTM) was based on visual analyses aided by processing and visualizing techniques. 368 features were identified in the aerial images, 437 in the satellite images and 1186 in the DTM. LiDAR yielded the better result, especially for hunting pits. Image data proved suitable for dwellings and settlement sites. Feature characteristics proved a key factor for detectability, both in LiDAR and image data. This study has shown that LiDAR and remote sensing image data are highly applicable for archaeological surveying in northern landscapes. It showed that a multi-sensor approach contributes to high detection rates. Our results have improved the inventory of archaeological sites in a non-destructive and minimally invasive manner.


Sign in / Sign up

Export Citation Format

Share Document