scholarly journals Test field for airborne laser scanning in Finland

Author(s):  
E. Ahokas ◽  
H. Kaartinen ◽  
A. Kukko ◽  
P. Litkey

Airborne laser scanning (ALS) is a widely spread operational measurement tool for obtaining 3D coordinates of the ground surface. There is a need for calibrating the ALS system and a test field for ALS was established at the end of 2013. The test field is situated in the city of Lahti, about 100 km to the north of Helsinki. The size of the area is approximately 3.5 km × 3.2 km. Reference data was collected with a mobile laser scanning (MLS) system assembled on a car roof. Some streets were measured both ways and most of them in one driving direction only. The MLS system of the Finnish Geodetic Institute (FGI) consists of a navigation system (NovAtel SPAN GNSS-IMU) and a laser scanner (FARO Focus3D 120). In addition to the MLS measurements more than 800 reference points were measured using a Trimble R8 VRS-GNSS system. Reference points are along the streets, on parking lots, and white pedestrian crossing line corners which can be used as reference targets. The National Land Survey of Finland has already used this test field this spring for calibrating their Leica ALS-70 scanner. Especially it was easier to determine the encoder scale factor parameter using this test field. Accuracy analysis of the MLS points showed that the point height RMSE is 2.8 cm and standard deviation is 2.6 cm. Our purpose is to measure both more MLS data and more reference points in the test field area to get a better spatial coverage. Calibration flight heights are planned to be 1000 m and 2500 m above ground level. A cross pattern, southwest–northeast and northwest–southeast, will be flown both in opposite directions.

Author(s):  
E. Ahokas ◽  
J. Hyyppä ◽  
X. Yu ◽  
X. Liang ◽  
L. Matikainen ◽  
...  

This paper describes the possibilities of the Optech Titan multispectral airborne laser scanner in the fields of mapping and forestry. Investigation was targeted to six land cover classes. Multispectral laser scanner data can be used to distinguish land cover classes of the ground surface, including the roads and separate road surface classes. For forest inventory using point cloud metrics and intensity features combined, total accuracy of 93.5% was achieved for classification of three main boreal tree species (pine, spruce and birch).When using intensity features – without point height metrics - a classification accuracy of 91% was achieved for these three tree species. It was also shown that deciduous trees can be further classified into more species. We propose that intensity-related features and waveform-type features are combined with point height metrics for forest attribute derivation in area-based prediction, which is an operatively applied forest inventory process in Scandinavia. It is expected that multispectral airborne laser scanning can provide highly valuable data for city and forest mapping and is a highly relevant data asset for national and local mapping agencies in the near future.


Author(s):  
E. Ahokas ◽  
J. Hyyppä ◽  
X. Yu ◽  
X. Liang ◽  
L. Matikainen ◽  
...  

This paper describes the possibilities of the Optech Titan multispectral airborne laser scanner in the fields of mapping and forestry. Investigation was targeted to six land cover classes. Multispectral laser scanner data can be used to distinguish land cover classes of the ground surface, including the roads and separate road surface classes. For forest inventory using point cloud metrics and intensity features combined, total accuracy of 93.5% was achieved for classification of three main boreal tree species (pine, spruce and birch).When using intensity features – without point height metrics - a classification accuracy of 91% was achieved for these three tree species. It was also shown that deciduous trees can be further classified into more species. We propose that intensity-related features and waveform-type features are combined with point height metrics for forest attribute derivation in area-based prediction, which is an operatively applied forest inventory process in Scandinavia. It is expected that multispectral airborne laser scanning can provide highly valuable data for city and forest mapping and is a highly relevant data asset for national and local mapping agencies in the near future.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1864
Author(s):  
Peter Mewis

The effect of vegetation in hydraulic computations can be significant. This effect is important for flood computations. Today, the necessary terrain information for flood computations is obtained by airborne laser scanning techniques. The quality and density of the airborne laser scanning information allows for more extensive use of these data in flow computations. In this paper, known methods are improved and combined into a new simple and objective procedure to estimate the hydraulic resistance of vegetation on the flow in the field. State-of-the-art airborne laser scanner information is explored to estimate the vegetation density. The laser scanning information provides the base for the calculation of the vegetation density parameter ωp using the Beer–Lambert law. In a second step, the vegetation density is employed in a flow model to appropriately account for vegetation resistance. The use of this vegetation parameter is superior to the common method of accounting for the vegetation resistance in the bed resistance parameter for bed roughness. The proposed procedure utilizes newly available information and is demonstrated in an example. The obtained values fit very well with the values obtained in the literature. Moreover, the obtained information is very detailed. In the results, the effect of vegetation is estimated objectively without the assignment of typical values. Moreover, a more structured flow field is computed with the flood around denser vegetation, such as groups of bushes. A further thorough study based on observed flow resistance is needed.


2020 ◽  
Vol 9 (4) ◽  
pp. 224
Author(s):  
Mihnea Cățeanu ◽  
Arcadie Ciubotaru

A digital model of the ground surface has many potential applications in forestry. Nowadays, Light Detection and Ranging (LiDAR) is one of the main sources for collecting morphological data. Point clouds obtained via laser scanning are used for modelling the ground surface by interpolation, a process which is affected by various errors. Using LiDAR data to collect ground surface data for forestry applications is a challenging scenario because the presence of forest vegetation will hinder the ability of laser pulses to reach the ground. The density of ground observations will be therefore reduced and not homogenous (as it is affected by the variations in canopy density). Furthermore, forest areas are generally present in mountainous areas, in which case the interpolation of the ground surface is more challenging. In this paper, we present a comparative analysis of interpolation accuracy for nine algorithms, which are used for generating Digital Terrain Models from Airborne Laser Scanning (ALS) data, in mountainous terrain covered by dense forest vegetation. For most of the algorithms we find a similar performance in terms of general accuracy, with RMSE values between 0.11 and 0.28 m (when model resolution is set to 0.5 m). Five of the algorithms (Natural Neighbour, Delauney Triangulation, Multilevel B-Spline, Thin-Plate Spline and Thin-Plate Spline by TIN) have vertical errors of less than 0.20 m for over 90 percent of validation points. Meanwhile, for most algorithms, major vertical errors (of over 1 m) are associated with less than 0.05 percent of validation points. Digital Terrain Model (DTM) resolution, ground slope and point cloud density influence the quality of the ground surface model, while for canopy density we find a less significant link with the quality of the interpolated DTMs.


2005 ◽  
Vol 42 ◽  
pp. 195-201 ◽  
Author(s):  
Thomas Geist ◽  
Hallgeir Elvehøy ◽  
Miriam Jackson ◽  
Johann Stötter

AbstractKey issues of glacier monitoring are changes in glacier geometry and glacier mass. As accurate direct measurements are costly and time-consuming, the use of various remote-sensing data for glacier monitoring is explored. One technology used and described here is airborne laser scanning. The method enables the derivation of high-quality digital elevation models (DEMs) with a vertical and horizontal accuracy in the sub-metre range. Between September 2001 and August 2002, three laser scanner data acquisition flights were carried out, covering the whole area of Engabreen, Norway, and corresponding well to the measurement dates for the mass-balance year 2001/02. The data quality of the DEMs is assessed (e.g. by comparing the values with a control area which has been surveyed independently or GPS ground profiles measured during the flights). For the whole glacier, surface elevation change and consequently volume change is calculated, quantified and compared with traditional mass-balance data for the same time interval. For the winter term, emergence/submergence velocity is determined from laser scanner data and snow-depth data and is compared with velocity measurements at stakes. The investigations reveal the high potential of airborne laser scanning for measuring the extent and the topography of glaciers as well as changes in geometry (Δarea, Δvolume).


Author(s):  
M. Pilarska ◽  
W. Ostrowski

<p><strong>Abstract.</strong> Airborne laser scanning (ALS) plays an important role in spatial data acquisition. One of the advantages of this technique is laser beam penetration through vegetation, which makes it possible to not only obtain data on the tree canopy but also within and under the canopy. In recent years, multi-wavelength airborne laser scanning has been developed. This technique consists of simultaneous acquisition of point clouds in more than one band. The aim of this experiment was to examine and assess the possibilities of tree segmentation and species classification in an urban area. In this experiment, point clouds registered in two wavelengths (532 and 1064&amp;thinsp;nm) were used for tree segmentation and species classification. The data were acquired with a Riegl VQ-1560i-DW laser scanner over Elblag, Poland, during August 2018. Tree species collected by a botanist team within terrain measurements were used as a reference in the classification process. Within the experiment segmentation and classification process were performed. Regarding the segmentation, TerraScan software and Li et al.’s algorithm, implemented in LidR package were used. Results from both methods are clearly over-segmented in comparison to the manual segments. In Terrasolid segmentation, single reference segments are over-segmented in 28% of cases, whereas, for LidR, over-segmentation occurred in 73% of the segments. According the classification results, Thuja, Salix and Betula were the species, for which the highest classification accuracy was achieved.</p>


2020 ◽  
Vol 12 (11) ◽  
pp. 1877 ◽  
Author(s):  
Krzysztof Stereńczak ◽  
Gaia Vaglio Laurin ◽  
Gherardo Chirici ◽  
David A. Coomes ◽  
Michele Dalponte ◽  
...  

Protection and recovery of natural resource and biodiversity requires accurate monitoring at multiple scales. Airborne Laser Scanning (ALS) provides high-resolution imagery that is valuable for monitoring structural changes to vegetation, providing a reliable reference for ecological analyses and comparison purposes, especially if used in conjunction with other remote-sensing and field products. However, the potential of ALS data has not been fully exploited, due to limits in data availability and validation. To bridge this gap, the global network for airborne laser scanner data (GlobALS) has been established as a worldwide network of ALS data providers that aims at linking those interested in research and applications related to natural resources and biodiversity monitoring. The network does not collect data itself but collects metadata and facilitates networking and collaborative research amongst the end-users and data providers. This letter describes this facility, with the aim of broadening participation in GlobALS.


Author(s):  
T. Zieher ◽  
M. Bremer ◽  
M. Rutzinger ◽  
J. Pfeiffer ◽  
P. Fritzmann ◽  
...  

<p><strong>Abstract.</strong> Multi-temporal 3D point clouds acquired with a laser scanner can be efficiently used for an area-wide assessment of landslide-induced surface changes. In the present study, displacements of the Vögelsberg landslide (Tyrol, Austria) are assessed based on available data acquired with airborne laser scanning (ALS) in 2013 and data acquired with an unmanned aerial vehicle (UAV) equipped with a laser scanner (ULS) in 2018. Following the data pre-processing steps including registration and ground filtering, buildings are segmented and extracted from the datasets. The roofs, represented as multi-temporal 3D point clouds are then used to derive displacement vectors with a novel matching tool based on the iterative closest point (ICP) algorithm. The resulting mean annual displacements are compared to the results of a geodetic monitoring based on an automatic tracking total station (ATTS) measuring 53 retroreflective prisms across the study area every hour since May 2016. In general, the results are in agreement concerning the mean annual magnitude (ATTS: 6.4&amp;thinsp;cm within 2.2 years, 2.9&amp;thinsp;cm a<sup>&amp;minus;1</sup>; laser scanning data: 13.2&amp;thinsp;cm within 5.4 years, 2.4&amp;thinsp;cm a<sup>&amp;minus;1</sup>) and direction of the derived displacements. The analysis of the laser scanning data proved suitable for deriving long-term landslide displacements and can provide additional information about the deformation of single roofs.</p>


Author(s):  
B. Székely ◽  
A. Kania ◽  
T. Standovár ◽  
H. Heilmeier

The horizontal variation and vertical layering of the vegetation are important properties of the canopy structure determining the habitat; three-dimensional (3D) distribution of objects (shrub layers, understory vegetation, etc.) is related to the environmental factors (e.g., illumination, visibility). It has been shown that gaps in forests, mosaic-like structures are essential to biodiversity; various methods have been introduced to quantify this property. As the distribution of gaps in the vegetation is a multi-scale phenomenon, in order to capture it in its entirety, scale-independent methods are preferred; one of these is the calculation of lacunarity. <br><br> We used Airborne Laser Scanning point clouds measured over a forest plantation situated in a former floodplain. The flat topographic relief ensured that the tree growth is independent of the topographic effects. The tree pattern in the plantation crops provided various quasi-regular and irregular patterns, as well as various ages of the stands. The point clouds were voxelized and layers of voxels were considered as images for two-dimensional input. These images calculated for a certain vicinity of reference points were taken as images for the computation of lacunarity curves, providing a stack of lacunarity curves for each reference points. These sets of curves have been compared to reveal spatial changes of this property. As the dynamic range of the lacunarity values is very large, the natural logarithms of the values were considered. Logarithms of lacunarity functions show canopy-related variations, we analysed these variations along transects. The spatial variation can be related to forest properties and ecology-specific aspects.


2005 ◽  
Vol 5 ◽  
pp. 57-63 ◽  
Author(s):  
M. Hollaus ◽  
W. Wagner ◽  
K. Kraus

Abstract. Digital terrain models form the basis for distributed hydrologic models as well as for two-dimensional hydraulic river flood models. The technique used for generating high accuracy digital terrain models has shifted from stereoscopic aerial-photography to airborne laser scanning during the last years. Since the disastrous floods 2002 in Austria, large airborne laser-scanning flight campaigns have been carried out for several river basins. Additionally to the topographic information, laser scanner data offer also the possibility to estimate object heights (vegetation, buildings). Detailed land cover maps can be derived in conjunction with the complementary information provided by high-resolution colour-infrared orthophotos. As already shown in several studies, the potential of airborne laser scanning to provide data for hydrologic/hydraulic applications is high. These studies were mostly constraint to small test sites. To overcome this spatial limitation, the current paper summarises the experiences to process airborne laser scanner data for large mountainous regions, thereby demonstrating the applicability of this technique in real-world hydrological applications.


Sign in / Sign up

Export Citation Format

Share Document