scholarly journals Analysis of the Monthly and Spring-Neap Tidal Variability of Satellite Chlorophyll-a and Total Suspended Matter in a Turbid Coastal Ocean Using the DINEOF Method

2021 ◽  
Vol 13 (4) ◽  
pp. 632
Author(s):  
Mengmeng Yang ◽  
Faisal Ahmed Khan ◽  
Hongzhen Tian ◽  
Qinping Liu

Missing spatial data is one of the major concerns associated with the application of satellite data. The Data INterpolating Empirical Orthogonal Functions (DINEOF) method has been proven to be an effective tool for filling spatial gaps in various satellite data products. The Ariake Sea, which is a turbid coastal sea, shows the large spatial and temporal variability of chlorophyll-a (Chl-a) and total suspended matter (TSM). However, ocean color satellite data for this region usually have large gaps, which affects the accurate analysis of Chl-a and TSM variability. In this study, we applied the DINEOF method to fill the missing pixels from the regionally tuned Moderate Resolution Imaging Spectroradiometer (MODIS)-Aqua (hereafter, MODIS) Chl-a and MODIS-derived TSM datasets for the period 2002–2017. The validation results showed that the DINEOF reconstructed data were accurate and reliable. Furthermore, the Empirical Orthogonal Functions (EOF) analysis based on the reconstructed data was used to quantitatively analyze the spatial and temporal variability of Chl-a and TSM at both monthly and individual events of spring-neap tidal scales. The first three EOF modes of Chl-a showed seasonal variability mainly caused by precipitation, the sea surface temperature (SST), and river discharge for the first EOF mode and the sea level amplitude for the second. The first three EOF modes of TSM exhibited both seasonal and spring-neap tidal variability. The first and second EOF modes of TSM displayed spring-neap tidal variability caused by the sea level amplitude. The second EOF mode of TSM also showed seasonal variability caused by the sea level amplitude. In this study, we first applied the DINEOF method to reconstruct the satellite data and to capture the major spatial and temporal variability of Chl-a and TSM for the Ariake Sea. Our results demonstrate that the DINEOF method can reconstruct patchy oceanic color datasets and improve spatio-temporal variability analysis.

2020 ◽  
Vol 12 (11) ◽  
pp. 1859
Author(s):  
Mengmeng Yang ◽  
Joaquim I. Goes ◽  
Hongzhen Tian ◽  
Elígio de R. Maúre ◽  
Joji Ishizaka

We investigated the spatio-temporal variability of chlorophyll-a (Chl-a) and total suspended matter (TSM) associated with spring–neap tidal cycles in the Ariake Sea, Japan. Our study relied on significantly improved, regionally-tuned datasets derived from the ocean color sensor Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua over a 16-year period (2002–2017). The results revealed that spring–neap tidal variations in Chl-a and TSM within this macrotidal embayment (the Ariake Sea) are clearly different regionally and seasonally. Generally, the spring–neap tidal variability of Chl-a in the inner part of the Ariake Sea was controlled by TSM for seasons other than summer, whereas it was controlled by river discharge for summer. On the other hand, the contribution of TSM to the variability of Chl-a was not large for two areas in the middle of Ariake Sea where TSM was not abundant. This study demonstrates that ocean color satellite observations of Chl-a and TSM in the macrotidal embayment offer strong advantages for understanding the variations during the spring–neap tidal cycle.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Douglas Batista da Silva Ferreira ◽  
Everaldo Barreiros de Souza ◽  
Bergson Cavalcanti de Moraes ◽  
Luiz Gylvan Meira Filho

Empirical orthogonal functions (EOF) and composites analysis were employed on pentad data in order to investigate the tropical atmospheric-ocean patterns over the Atlantic Ocean and the spatial-temporal characteristics of the rainfall in eastern Amazon during the peak of the rainy season (February to April). The EOF results evidenced that the Intertropical Convergence Zone (ITCZ) is the main rainfall-producing system in eastern Amazon during the rainy season. Conditions associated with the southward SST gradient in the intertropical Atlantic formed the dynamic patterns that favored the position of the ITCZ to south of the equator, thus explaining the predominance of positive precipitation anomalies in eastern Amazon, especially in the state of Maranhão and northeastern Pará during the February and April months.


1988 ◽  
Vol 39 (3) ◽  
pp. 245 ◽  
Author(s):  
A Huyer ◽  
RL Smith ◽  
PJ Stabeno ◽  
JA Church ◽  
NJ White

The Australian Coastal Experiment was conducted off the east coast of New South Wales between September 1983 and March 1984. The experiment was conducted with arrays of current meters spanning the continental margin at three latitudes (37.5�, 34.5�, and 33.0�S.), additional shelf moorings at 29� and 42�S. coastal wind and sea-level measurements, monthly conductivity-temperature-depth probe/expendable bathythermograph (CTD/XBT) surveys, and two satellite-tracked buoys. Over the continental shelf and slope, the alongshore component of the current generally exceeded the onshore component, and the subtidal (<0.6 cpd, cycles per day) current variability greatly exceeded the mean flow. Part of the current variability was associated with two separate warm-core eddies that approached the coast, causing strong (>50 cm sec-1), persistent (>8 days), southward currents over the continental slope and outer shelf. Temperature and geostrophic velocity sections through the eddies, maps of ship's drift vectors and temperature contours at 250 m, and the satellite-tracked drifter trajectories showed that these eddies were similar in structure to those observed previously in the East Australian Current region. Both eddies migrated generally southward. Eddy currents over the shelf and slope were rare at Cape Howe (37.5�S.), more common near Sydney (34.5�S.), and frequent at Newcastle (33.0�S.), where strong northward currents were also observed. Near Sydney, the eddy currents over the slope turned clockwise with depth between 280 and 740 m, suggesting net downwelling there. Repeated CTD sections also indicated onshore transport and downwelling at shallower levels; presumably, upwelling occurred farther south where the eddy currents turned offshore. Periodic rotary currents over the continental slope near Sydney and Newcastle indicated the presence of small cyclonic eddies on the flank of a much larger anticyclonic eddy. Between early October and late January, no strong southward currents were observed over the continental margin near Sydney. Data from this 'eddy-free' period were analysed further to examine the structure and variability of the coastal currents. Much of this variability was correlated with fluctuations in coastal sea-level (at zero lag) and with the wind stress (at various lags). The coherence and phase relationships among current, wind-stress, and sea-level records at different latitudes (determined from spectral analysis and frequency-domain empirical orthogonal functions) were consistent with the equatorward propagation of coastal-trapped waves generated by winds in phase with those near Cape Howe. Time-domain empirical orthogonal functions show that the current fluctuations decayed with distance from shore and with depth, as expected of coastal-trapped waves.


2019 ◽  
Vol 11 (7) ◽  
pp. 858 ◽  
Author(s):  
Redouane Lguensat ◽  
Phi Huynh Viet ◽  
Miao Sun ◽  
Ge Chen ◽  
Tian Fenglin ◽  
...  

From the recent developments of data-driven methods as a means to better exploit large-scale observation, simulation and reanalysis datasets for solving inverse problems, this study addresses the improvement of the reconstruction of higher-resolution Sea Level Anomaly (SLA) fields using analog strategies. This reconstruction is stated as an analog data assimilation issue, where the analog models rely on patch-based and Empirical Orthogonal Functions (EOF)-based representations to circumvent the curse of dimensionality. We implement an Observation System Simulation Experiment (OSSE) in the South China Sea. The reported results show the relevance of the proposed framework with a significant gain in terms of Root Mean Square Error (RMSE) for scales below 100 km. We further discuss the usefulness of the proposed analog model as a means to exploit high-resolution model simulations for the processing and analysis of current and future satellite-derived altimetric data with regard to conventional interpolation schemes, especially optimal interpolation.


2018 ◽  
Vol 15 (5) ◽  
pp. 1395-1414 ◽  
Author(s):  
Saleem Shalin ◽  
Annette Samuelsen ◽  
Anton Korosov ◽  
Nandini Menon ◽  
Björn C. Backeberg ◽  
...  

Abstract. The spatial and temporal variability of marine autotrophic abundance, expressed as chlorophyll concentration, is monitored from space and used to delineate the surface signature of marine ecosystem zones with distinct optical characteristics. An objective zoning method is presented and applied to satellite-derived Chlorophyll a (Chl a) data from the northern Arabian Sea (50–75∘ E and 15–30∘ N) during the winter months (November–March). Principal component analysis (PCA) and cluster analysis (CA) were used to statistically delineate the Chl a into zones with similar surface distribution patterns and temporal variability. The PCA identifies principal components of variability and the CA splits these into zones based on similar characteristics. Based on the temporal variability of the Chl a pattern within the study area, the statistical clustering revealed six distinct ecological zones. The obtained zones are related to the Longhurst provinces to evaluate how these compared to established ecological provinces. The Chl a variability within each zone was then compared with the variability of oceanic and atmospheric properties viz. mixed-layer depth (MLD), wind speed, sea-surface temperature (SST), photosynthetically active radiation (PAR), nitrate and dust optical thickness (DOT) as an indication of atmospheric input of iron to the ocean. The analysis showed that in all zones, peak values of Chl a coincided with low SST and deep MLD. The rate of decrease in SST and the deepening of MLD are observed to trigger the algae bloom events in the first four zones. Lagged cross-correlation analysis shows that peak Chl a follows peak MLD and SST minima. The MLD time lag is shorter than the SST lag by 8 days, indicating that the cool surface conditions might have enhanced mixing, leading to increased primary production in the study area. An analysis of monthly climatological nitrate values showed increased concentrations associated with the deepening of the mixed layer. The input of iron seems to be important in both the open-ocean and coastal areas of the northern and north-western parts of the northern Arabian Sea, where the seasonal variability of the Chl a pattern closely follows the variability of iron deposition.


2014 ◽  
Vol 8 (1) ◽  
pp. 5-16 ◽  
Author(s):  
Nicoleta Ionac ◽  
Monica Matei

Abstract The present paper investigates on the spatial and temporal variability of maximum and minimum air-temperatures in Romania and their connection to the European climate variability. The European climate variability is expressed by large scale parameters, which are roughly represented by the geopotential height at 500 hPa (H500) and air temperature at 850 hPa (T850). The Romanian data are represented by the time series at 22 weather stations, evenly distributed over the entire country’s territory. The period that was taken into account was 1961-2010, for the summer and winter seasons. The method of empirical orthogonal functions (EOF) has been used, in order to analyze the connection between the temperature variability in Romania and the same variability at a larger scale, by taking into consideration the atmosphere circulation. The time series associated to the first two EOF patterns of local temperatures and large-scale anomalies were considered with regard to trends and shifts in their mean values. The non- Mann-Kendall and Pettitt parametric tests were used in this respect. The results showed a strong correlation between T850 parameter and minimum and maximum air temperatures in Romania. Also, the ample variance expressed by the first EOF configurations suggests a connection between local and large scale climate variability.


Sign in / Sign up

Export Citation Format

Share Document