scholarly journals Forest Fuel Loads Estimation from Landsat ETM+ and ALOS PALSAR Data

2021 ◽  
Vol 13 (6) ◽  
pp. 1189
Author(s):  
Yanxi Li ◽  
Xingwen Quan ◽  
Zhanmang Liao ◽  
Binbin He

Fuel load is the key factor driving fire ignition, spread and intensity. The current literature reports the light detection and ranging (LiDAR), optical and airborne synthetic aperture radar (SAR) data for fuel load estimation, but the optical and SAR data are generally individually explored. Optical and SAR data are expected to be sensitive to different types of fuel loads because of their different imaging mechanisms. Optical data mainly captures the characteristics of leaf and forest canopy, while the latter is more sensitive to forest vertical structures due to its strong penetrability. This study aims to explore the performance of Landsat Enhanced Thematic Mapper Plus (ETM+) and Advanced Land Observing Satellite (ALOS) Phased Arrayed L-band Synthetic Aperture Radar (PALSAR) data as well as their combination on estimating three different types of fuel load—stem fuel load (SFL), branch fuel load (BFL) and foliage fuel load (FFL). We first analyzed the correlation between the three types of fuel load and optical and SAR data. Then, the partial least squares regression (PLSR) was used to build the fuel load estimation models based on the fuel load measurements from Vindeln, Sweden, and variables derived from optical and SAR data. Based on the leave-one-out cross-validation (LOOCV) method, results show that L-band SAR data performed well on all three types of fuel load (R2 = 0.72, 0.70, 0.72). The optical data performed best for FFL estimation (R2 = 0.66), followed by BFL (R2 = 0.56) and SFL (R2 = 0.37). Further improvements were found for the SFL, BFL and FFL estimation when integrating optical and SAR data (R2 = 0.76, 0.81, 0.82), highlighting the importance of data selection and combination for fuel load estimation.

2021 ◽  
Author(s):  
Adam Collingwood ◽  
Paul Treitz ◽  
Francois Charbonneau ◽  
David M. Atkinson

Vegetation in the Arctic is often sparse, spatially heterogeneous, and difficult to model. Synthetic Aperture Radar (SAR) has shown some promise in above-ground phytomass estimation at sub-arctic latitudes, but the utility of this type of data is not known in the context of the unique environments of the Canadian High Arctic. In this paper, Artificial Neural Networks (ANNs) were created to model the relationship between variables derived from high resolution multi-incidence angle RADARSAT-2 SAR data and optically-derived (GeoEye-1) Soil Adjusted Vegetation Index (SAVI) values. The modeled SAVI values (i.e., from SAR variables) were then used to create maps of above-ground phytomass across the study area. SAVI model results for individual ecological classes of polar semi-desert, mesic heath, wet sedge, and felsenmeer were reasonable, with r2 values of 0.43, 0.43, 0.30, and 0.59, respectively. When the outputs of these models were combined to analyze the relationship between the model output and SAVI as a group, the r2 value was 0.60, with an 8% normalized root mean square error (% of the total range of phytomass values), a positive indicator of a relationship. The above-ground phytomass model also resulted in a very strong relationship (r2 = 0.87) between SAR-modeled and field-measured phytomass. A positive relationship was also found between optically derived SAVI values and field measured phytomass (r2 = 0.79). These relationships demonstrate the utility of SAR data, compared to using optical data alone, for modeling above-ground phytomass in a high arctic environment possessing relatively low levels of vegetation.


2021 ◽  
Vol 15 (4) ◽  
pp. 1907-1929
Author(s):  
Georg Pointner ◽  
Annett Bartsch ◽  
Yury A. Dvornikov ◽  
Alexei V. Kouraev

Abstract. Regions of anomalously low backscatter in C-band synthetic aperture radar (SAR) imagery of lake ice of Lake Neyto in northwestern Siberia have been suggested to be caused by emissions of gas (methane from hydrocarbon reservoirs) through the lake’s sediments. However, to assess this connection, only analyses of data from boreholes in the vicinity of Lake Neyto and visual comparisons to medium-resolution optical imagery have been provided due to a lack of in situ observations of the lake ice itself. These observations are impeded due to accessibility and safety issues. Geospatial analyses and innovative combinations of satellite data sources are therefore proposed to advance our understanding of this phenomenon. In this study, we assess the nature of the backscatter anomalies in Sentinel-1 C-band SAR images in combination with very high resolution (VHR) WorldView-2 optical imagery. We present methods to automatically map backscatter anomaly regions from the C-band SAR data (40 m pixel spacing) and holes in lake ice from the VHR data (0.5 m pixel spacing) and examine their spatial relationships. The reliability of the SAR method is evaluated through comparison between different acquisition modes. The results show that the majority of mapped holes (71 %) in the VHR data are clearly related to anomalies in SAR imagery acquired a few days earlier, and similarities to SAR imagery acquired more than a month before are evident, supporting the hypothesis that anomalies may be related to gas emissions. Further, a significant expansion of backscatter anomaly regions in spring is documented and quantified in all analysed years 2015 to 2019. Our study suggests that the backscatter anomalies might be caused by lake ice subsidence and consequent flooding through the holes over the ice top leading to wetting and/or slushing of the snow around the holes, which might also explain outcomes of polarimetric analyses of auxiliary L-band Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) data. C-band SAR data are considered to be valuable for the identification of lakes showing similar phenomena across larger areas in the Arctic in future studies.


Land ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 116 ◽  
Author(s):  
Manuela Hirschmugl ◽  
Carina Sobe ◽  
Janik Deutscher ◽  
Mathias Schardt

Recent developments in satellite data availability allow tropical forest monitoring to expand in two ways: (1) dense time series foster the development of new methods for mapping and monitoring dry tropical forests and (2) the combination of optical data and synthetic aperture radar (SAR) data reduces the problems resulting from frequent cloud cover and yields additional information. This paper covers both issues by analyzing the possibilities of using optical (Sentinel-2) and SAR (Sentinel-1) time series data for forest and land cover mapping for REDD+ (Reducing Emissions from Deforestation and Forest Degradation) applications in Malawi. The challenge is to combine these different data sources in order to make optimal use of their complementary information content. We compare the results of using different input data sets as well as of two methods for data combination. Results show that time-series of optical data lead to better results than mono-temporal optical data (+8% overall accuracy for forest mapping). Combination of optical and SAR data leads to further improvements: +5% in overall accuracy for land cover and +1.5% for forest mapping. With respect to the tested combination methods, the data-based combination performs slightly better (+1% overall accuracy) than the result-based Bayesian combination.


2020 ◽  
Vol 12 (14) ◽  
pp. 2228
Author(s):  
Marco Ottinger ◽  
Claudia Kuenzer

The coastal zone offers among the world’s most productive and valuable ecosystems and is experiencing increasing pressure from anthropogenic impacts: human settlements, agriculture, aquaculture, trade, industrial activities, oil and gas exploitation and tourism. Earth observation has great capability to deliver valuable data at the local, regional and global scales and can support the assessment and monitoring of land- and water-related applications in coastal zones. Compared to optical satellites, cloud-cover does not limit the timeliness of data acquisition with spaceborne Synthetic Aperture Radar (SAR) sensors, which have all-weather, day and night capabilities. Hence, active radar systems demonstrate great potential for continuous mapping and monitoring of coastal regions, particularly in cloud-prone tropical and sub-tropical climates. The canopy penetration capability with long radar wavelength enables L-band SAR data to be used for coastal terrestrial environments and has been widely applied and investigated for the following geoscientific topics: mapping and monitoring of flooded vegetation and inundated areas; the retrieval of aboveground biomass; and the estimation of soil moisture. Human activities, global population growth, urban sprawl and climate change-induced impacts are leading to increased pressure on coastal ecosystems causing land degradation, deforestation and land use change. This review presents a comprehensive overview of existing research articles that apply spaceborne L-band SAR data for geoscientific analyses that are relevant for coastal land applications.


2021 ◽  
Vol 13 (22) ◽  
pp. 4516
Author(s):  
Helen Blue Parache ◽  
Timothy Mayer ◽  
Kelsey E. Herndon ◽  
Africa Ixmucane Flores-Anderson ◽  
Yang Lei ◽  
...  

Forest stand height (FSH), or average canopy height, serves as an important indicator for forest monitoring. The information provided about above-ground biomass for greenhouse gas emissions reporting and estimating carbon storage is relevant for reporting for Reducing Emissions from Deforestation and Forest Degradation (REDD+). A novel forest height estimation method utilizing a fusion of backscatter and Interferometric Synthetic Aperture Radar (InSAR) data from JAXA’s Advanced Land Observing Satellite Phased Array type L-band Synthetic Aperture Radar (ALOS PALSAR) is applied to a use case in Savannakhet, Lao. Compared with LiDAR, the estimated height from the fusion method had an RMSE of 4.90 m and an R2 of 0.26. These results are comparable to previous studies using SAR estimation techniques. Despite limitations of data quality and quantity, the Savannakhet, Lao use case demonstrates the applicability of these techniques utilizing L-band SAR data for estimating FSH in tropical forests and can be used as a springboard for use of L-band data from the future NASA-ISRO SAR (NISAR) mission.


2021 ◽  
Author(s):  
Adam Collingwood ◽  
Paul Treitz ◽  
Francois Charbonneau ◽  
David M. Atkinson

Vegetation in the Arctic is often sparse, spatially heterogeneous, and difficult to model. Synthetic Aperture Radar (SAR) has shown some promise in above-ground phytomass estimation at sub-arctic latitudes, but the utility of this type of data is not known in the context of the unique environments of the Canadian High Arctic. In this paper, Artificial Neural Networks (ANNs) were created to model the relationship between variables derived from high resolution multi-incidence angle RADARSAT-2 SAR data and optically-derived (GeoEye-1) Soil Adjusted Vegetation Index (SAVI) values. The modeled SAVI values (i.e., from SAR variables) were then used to create maps of above-ground phytomass across the study area. SAVI model results for individual ecological classes of polar semi-desert, mesic heath, wet sedge, and felsenmeer were reasonable, with r2 values of 0.43, 0.43, 0.30, and 0.59, respectively. When the outputs of these models were combined to analyze the relationship between the model output and SAVI as a group, the r2 value was 0.60, with an 8% normalized root mean square error (% of the total range of phytomass values), a positive indicator of a relationship. The above-ground phytomass model also resulted in a very strong relationship (r2 = 0.87) between SAR-modeled and field-measured phytomass. A positive relationship was also found between optically derived SAVI values and field measured phytomass (r2 = 0.79). These relationships demonstrate the utility of SAR data, compared to using optical data alone, for modeling above-ground phytomass in a high arctic environment possessing relatively low levels of vegetation.


2018 ◽  
Vol 12 (7-8) ◽  
pp. 54-60 ◽  
Author(s):  
V. A. ZELENTSOV ◽  
S. A. POTRYASAEV ◽  
I. YU. PIMANOV ◽  
M. R. PONOMARENKO

The paper discusses the opportunities of remote sensing data application as one of the main sources of information for monitoring river floods. Effective operation of flood forecasting systems requires reliable real-time data on inundation areas for timely calibration and verification of the used hydrodynamic models. The opportunity to obtain data from optical sensors might be limited because of dense cloud cover. Synthetic aperture radar (SAR) techniques are increasingly used today due to ability to operate independently of the surface illumination and the state of cloud cover receiving high spatial resolution data in near real-time mode. An important feature of SAR from space today is the increase in the number of freely distributed space data, in particular — images from Sentinel satellites developed by the European Space Agency. For instance, for the territory of Russia Sentinel-1 performs SAR imaging with 2–3 days coverage frequency. Within the framework of the project carried out by the authors, the research area is the city of Velikiy Ustuyg (Russia) located at the confluence of rivers Suhona and Ug. To identify flooded areas the RADARSAT-2 and Sentinel-1 images classification based on thresholding was carried out in open-source software. The visualization of the results was performed on the basis of information analytical system “Prostor”. The results of SAR data processing were compared with contours obtained on the basis of the calculation of the NDWI index from optical data from the Sentinel-2 and Resurs-P satellites. According to the spatial resolution of the data and the selected processing technology, it is possible to achieve high accuracy of flood mapping in open areas with low urbanization. The result confirms that SAR data can be successfully applied for operational flood forecasting.


2021 ◽  
Author(s):  
Daniel Aja ◽  
Michael Miyittah ◽  
Donatus Bapentire Angnuureng

Abstract Mangrove Forest classification in tropical coastal zones based on only passive remote sensing methods is hampered by Mangrove complexities, topographic considerations and cloud cover effects among other things. This paper reports on a novel approach that combines Optical Satellite images and Synthetic Aperture Radar alongside their derived parameters to overcome the challenges of distinguishing Mangrove stand in cloud prone regions. Google Earth Engine (GEE) cloud-based geospatial processing platform was used to extract several scenes of Landsat Surface Reflectance Tier1 and synthetic aperture radar (C-band and L-band). The imageries were enhanced by creating a function that masks out clouds from the optical satellite image and by using speckle filter to remove noise from the radar data. The random forest algorithm proved to be a robust and accurate machine learning approach for mangrove classification and assessment. Our result show that about 16% of the mangrove extent was lost in the last decade. The accuracy was assessed based on three classification scenarios: classification of optical data only, classification of SAR data only, and combination of both optical and SAR data. The overall accuracies were 99.1% (Kappa Coefficient =0.797), 84.6% (Kappa Coefficient = 0.687) and 98.9% (Kappa Coefficient = 0.828) respectively. This case study demonstrates how mangrove mapping can help focus conservation practices locally in climate change setting, coupled with sea level rise and related threats to coastal ecosystems.


2018 ◽  
Vol 10 (8) ◽  
pp. 1304 ◽  
Author(s):  
Yusupujiang Aimaiti ◽  
Fumio Yamazaki ◽  
Wen Liu

In earthquake-prone areas, identifying patterns of ground deformation is important before they become latent risk factors. As one of the severely damaged areas due to the 2011 Tohoku earthquake in Japan, Urayasu City in Chiba Prefecture has been suffering from land subsidence as a part of its land was built by a massive land-fill project. To investigate the long-term land deformation patterns in Urayasu City, three sets of synthetic aperture radar (SAR) data acquired during 1993–2006 from European Remote Sensing satellites (ERS-1/-2 (C-band)), during 2006–2010 from the Phased Array L-band Synthetic Aperture Radar onboard the Advanced Land Observation Satellite (ALOS PALSAR (L-band)) and from 2014–2017 from the ALOS-2 PALSAR-2 (L-band) were processed by using multitemporal interferometric SAR (InSAR) techniques. Leveling survey data were also used to verify the accuracy of the InSAR-derived results. The results from the ERS-1/-2, ALOS PALSAR and ALOS-2 PALSAR-2 data processing showed continuing subsidence in several reclaimed areas of Urayasu City due to the integrated effects of numerous natural and anthropogenic processes. The maximum subsidence rate of the period from 1993 to 2006 was approximately 27 mm/year, while the periods from 2006 to 2010 and from 2014 to 2017 were approximately 30 and 18 mm/year, respectively. The quantitative validation results of the InSAR-derived deformation trend during the three observation periods are consistent with the leveling survey data measured from 1993 to 2017. Our results further demonstrate the advantages of InSAR measurements as an alternative to ground-based measurements for land subsidence monitoring in coastal reclaimed areas.


Sign in / Sign up

Export Citation Format

Share Document