scholarly journals Robust Classification Technique for Hyperspectral Images Based on 3D-Discrete Wavelet Transform

2021 ◽  
Vol 13 (7) ◽  
pp. 1255
Author(s):  
R Anand ◽  
S Veni ◽  
J Aravinth

Hyperspectral image classification is an emerging and interesting research area that has attracted several researchers to contribute to this field. Hyperspectral images have multiple narrow bands for a single image that enable the development of algorithms to extract diverse features. Three-dimensional discrete wavelet transform (3D-DWT) has the advantage of extracting the spatial and spectral information simultaneously. Decomposing an image into a set of spatial–spectral components is an important characteristic of 3D-DWT. It has motivated us to perform the proposed research work. The novelty of this work is to bring out the features of 3D-DWT applicable to hyperspectral images classification using Haar, Fejér-Korovkin and Coiflet filters. Three-dimensional-DWT is implemented with the help of three stages of 1D-DWT. The first two stages of 3D-DWT are extracting spatial resolution, and the third stage is extracting the spectral content. In this work, the 3D-DWT features are extracted and fed to the following classifiers (i) random forest (ii) K-nearest neighbor (KNN) and (iii) support vector machine (SVM). Exploiting both spectral and spatial features help the classifiers to provide a better classification accuracy. A comparison of results was performed with the same classifiers without DWT features. The experiments were performed using Salinas Scene and Indian Pines hyperspectral datasets. From the experiments, it has been observed that the SVM with 3D-DWT features performs better in terms of the performance metrics such as overall accuracy, average accuracy and kappa coefficient. It has shown significant improvement compared to the state of art techniques. The overall accuracy of 3D-DWT+SVM is 88.3%, which is 14.5% larger than that of traditional SVM (77.1%) for the Indian Pines dataset. The classification map of 3D-DWT + SVM is more closely related to the ground truth map.

Biometrics ◽  
2017 ◽  
pp. 761-777
Author(s):  
Di Zhao

Mobile GPU computing, or System on Chip with embedded GPU (SoC GPU), becomes in great demand recently. Since these SoCs are designed for mobile devices with real-time applications such as image processing and video processing, high-efficient implementations of wavelet transform are essential for these chips. In this paper, the author develops two SoC GPU based DWT: signal based parallelization for discrete wavelet transform (sDWT) and coefficient based parallelization for discrete wavelet transform (cDWT), and the author evaluates the performance of three-dimensional wavelet transform on SoC GPU Tegra K1. Computational results show that, SoC GPU based DWT is significantly faster than SoC CPU based DWT. Computational results also show that, sDWT can generally satisfy the requirement of real-time processing (30 frames per second) with the image sizes of 352×288, 480×320, 720×480 and 1280×720, while cDWT can only obtain read-time processing with small image sizes of 352×288 and 480×320.


2006 ◽  
Vol 2 (4) ◽  
pp. 411-417 ◽  
Author(s):  
Bahram Javidi ◽  
Cuong Manh Do ◽  
Seung-Hyun Hong ◽  
Takanori Nomura

Sign in / Sign up

Export Citation Format

Share Document