3d dwt
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 3)

H-INDEX

7
(FIVE YEARS 0)

Optik ◽  
2021 ◽  
pp. 167774
Author(s):  
Anish Kumar Vishwakarma ◽  
Kishor M. Bhurchandi


2021 ◽  
Vol 13 (7) ◽  
pp. 1255
Author(s):  
R Anand ◽  
S Veni ◽  
J Aravinth

Hyperspectral image classification is an emerging and interesting research area that has attracted several researchers to contribute to this field. Hyperspectral images have multiple narrow bands for a single image that enable the development of algorithms to extract diverse features. Three-dimensional discrete wavelet transform (3D-DWT) has the advantage of extracting the spatial and spectral information simultaneously. Decomposing an image into a set of spatial–spectral components is an important characteristic of 3D-DWT. It has motivated us to perform the proposed research work. The novelty of this work is to bring out the features of 3D-DWT applicable to hyperspectral images classification using Haar, Fejér-Korovkin and Coiflet filters. Three-dimensional-DWT is implemented with the help of three stages of 1D-DWT. The first two stages of 3D-DWT are extracting spatial resolution, and the third stage is extracting the spectral content. In this work, the 3D-DWT features are extracted and fed to the following classifiers (i) random forest (ii) K-nearest neighbor (KNN) and (iii) support vector machine (SVM). Exploiting both spectral and spatial features help the classifiers to provide a better classification accuracy. A comparison of results was performed with the same classifiers without DWT features. The experiments were performed using Salinas Scene and Indian Pines hyperspectral datasets. From the experiments, it has been observed that the SVM with 3D-DWT features performs better in terms of the performance metrics such as overall accuracy, average accuracy and kappa coefficient. It has shown significant improvement compared to the state of art techniques. The overall accuracy of 3D-DWT+SVM is 88.3%, which is 14.5% larger than that of traditional SVM (77.1%) for the Indian Pines dataset. The classification map of 3D-DWT + SVM is more closely related to the ground truth map.



Entropy ◽  
2020 ◽  
Vol 22 (12) ◽  
pp. 1385
Author(s):  
Roman Starosolski

The primary purpose of the reported research was to improve the discrete wavelet transform (DWT)-based JP3D compression of volumetric medical images by applying new methods that were only previously used in the compression of two-dimensional (2D) images. Namely, we applied reversible denoising and lifting steps with step skipping to three-dimensional (3D)-DWT and constructed a hybrid transform that combined 3D-DWT with prediction. We evaluated these methods using a test-set containing images of modalities: Computed Tomography (CT), Magnetic Resonance Imaging (MRI), and Ultrasound (US). They proved effective for 3D data resulting in over two times greater compression ratio improvements than competitive methods. While employing fast entropy estimation of JP3D compression ratio to reduce the cost of image-adaptive parameter selection for the new methods, we found that some MRI images had sparse histograms of intensity levels. We applied the classical histogram packing (HP) and found that, on average, it resulted in greater ratio improvements than the new sophisticated methods and that it could be combined with these new methods to further improve ratios. Finally, we proposed a few practical compression schemes that exploited HP, entropy estimation, and the new methods; on average, they improved the compression ratio by up to about 6.5% at an acceptable cost.



2020 ◽  
Vol 20 (03) ◽  
pp. 2050017 ◽  
Author(s):  
S. S. Divakara ◽  
Sudarshan Patilkulkarni ◽  
Cyril Prasanna Raj

Novel high-speed memory optimized distributed arithmetic (DA)-based architecture is developed and modeled for 3D discrete wavelet transform (DWT). The memory requirement for the proposed architecture is designed to [Formula: see text] pixel dynamic memory space and [Formula: see text] ROM. The proposed 3D-DWT architecture implements 9/7 Daubechies wavelet filters, synthesizes 7127 bytes of memory for temporary storage and uses 758 adders, 36 multiplexers of 16:1 and 36 up counter to realize the 3D-DWT hardware. The 3D-DWT engine is implemented and tested in a Xilinx FPGA Vertex5 XC5VLX155T with high area and power efficiency. The maximum delay in the timing path is 2.676[Formula: see text]ns and the 3D-DWT works at maximum frequency of 381[Formula: see text]MHz clock.





2018 ◽  
Vol 28 (09) ◽  
pp. 1850022 ◽  
Author(s):  
Olga Valenzuela ◽  
Xiaoyi Jiang ◽  
Antonio Carrillo ◽  
Ignacio Rojas

Computer-Aided Diagnosis (CAD) represents a relevant instrument to automatically classify between patients with and without Alzheimer's Disease (AD) using several actual imaging techniques. This study analyzes the optimization of volumes of interest (VOIs) to extract three-dimensional (3D) textures from Magnetic Resonance Image (MRI) in order to diagnose AD, Mild Cognitive Impairment converter (MCIc), Mild Cognitive Impairment nonconverter (MCInc) and Normal subjects. A relevant feature of the proposed approach is the use of 3D features instead of traditional two-dimensional (2D) features, by using 3D discrete wavelet transform (3D-DWT) approach for performing feature extraction from T-1 weighted MRI. Due to the high number of coefficients when applying 3D-DWT to each of the VOIs, a feature selection algorithm based on mutual information is used, as is the minimum Redundancy Maximum Relevance (mRMR) algorithm. Region optimization has been performed in order to discover the most relevant regions (VOIs) in the brain with the use of Multi-Objective Genetic Algorithms, being one of the objectives to be optimize the accuracy of the system. The error index of the system is computed by the confusion matrix obtained by the multi-class support vector machine (SVM) classifier. Principal Component Analysis (PCA) is used with the purpose of reducing the number of features to the classifier. The cohort of subjects used in the study consisted of 296 different patients. A first group of 206 patients was used to optimize VOI selection and another group of 90 independent subjects (that did not belong to the first group) was used to test the solutions yielded by the genetic algorithm. The proposed methodology obtains excellent results in multi-class classification achieving accuracies of 94.4% and also extracting significant information on the location of the most relevant points of the brain. This suggests that the proposed method could aid in the research of other neurodegenerative diseases, improving the accuracy of the diagnosis and finding the most relevant regions of the brain associated with them.





Sign in / Sign up

Export Citation Format

Share Document