scholarly journals Self-Matching CAM: A Novel Accurate Visual Explanation of CNNs for SAR Image Interpretation

2021 ◽  
Vol 13 (9) ◽  
pp. 1772
Author(s):  
Zhenpeng Feng ◽  
Mingzhe Zhu ◽  
Ljubiša Stanković ◽  
Hongbing Ji

Synthetic aperture radar (SAR) image interpretation has long been an important but challenging task in SAR imaging processing. Generally, SAR image interpretation comprises complex procedures including filtering, feature extraction, image segmentation, and target recognition, which greatly reduce the efficiency of data processing. In an era of deep learning, numerous automatic target recognition methods have been proposed based on convolutional neural networks (CNNs) due to their strong capabilities for data abstraction and mining. In contrast to general methods, CNNs own an end-to-end structure where complex data preprocessing is not needed, thus the efficiency can be improved dramatically once a CNN is well trained. However, the recognition mechanism of a CNN is unclear, which hinders its application in many scenarios. In this paper, Self-Matching class activation mapping (CAM) is proposed to visualize what a CNN learns from SAR images to make a decision. Self-Matching CAM assigns a pixel-wise weight matrix to feature maps of different channels by matching them with the input SAR image. By using Self-Matching CAM, the detailed information of the target can be well preserved in an accurate visual explanation heatmap of a CNN for SAR image interpretation. Numerous experiments on a benchmark dataset (MSTAR) verify the validity of Self-Matching CAM.

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Hongqiao Wang ◽  
Yanning Cai ◽  
Guangyuan Fu ◽  
Shicheng Wang

Aiming at the multiple target recognition problems in large-scene SAR image with strong speckle, a robust full-process method from target detection, feature extraction to target recognition is studied in this paper. By introducing a simple 8-neighborhood orthogonal basis, a local multiscale decomposition method from the center of gravity of the target is presented. Using this method, an image can be processed with a multilevel sampling filter and the target’s multiscale features in eight directions and one low frequency filtering feature can be derived directly by the key pixels sampling. At the same time, a recognition algorithm organically integrating the local multiscale features and the multiscale wavelet kernel classifier is studied, which realizes the quick classification with robustness and high accuracy for multiclass image targets. The results of classification and adaptability analysis on speckle show that the robust algorithm is effective not only for the MSTAR (Moving and Stationary Target Automatic Recognition) target chips but also for the automatic target recognition of multiclass/multitarget in large-scene SAR image with strong speckle; meanwhile, the method has good robustness to target’s rotation and scale transformation.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4536
Author(s):  
Bo Zang ◽  
Linlin Ding ◽  
Zhenpeng Feng ◽  
Mingzhe Zhu ◽  
Tao Lei ◽  
...  

Target recognition is one of the most challenging tasks in synthetic aperture radar (SAR) image processing since it is highly affected by a series of pre-processing techniques which usually require sophisticated manipulation for different data and consume huge calculation resources. To alleviate this limitation, numerous deep-learning based target recognition methods are proposed, particularly combined with convolutional neural network (CNN) due to its strong capability of data abstraction and end-to-end structure. In this case, although complex pre-processing can be avoided, the inner mechanism of CNN is still unclear. Such a “black box” only tells a result but not what CNN learned from the input data, thus it is difficult for researchers to further analyze the causes of errors. Layer-wise relevance propagation (LRP) is a prevalent pixel-level rearrangement algorithm to visualize neural networks’ inner mechanism. LRP is usually applied in sparse auto-encoder with only fully-connected layers rather than CNN, but such network structure usually obtains much lower recognition accuracy than CNN. In this paper, we propose a novel LRP algorithm particularly designed for understanding CNN’s performance on SAR image target recognition. We provide a concise form of the correlation between output of a layer and weights of the next layer in CNNs. The proposed method can provide positive and negative contributions in input SAR images for CNN’s classification, viewed as a clear visual understanding of CNN’s recognition mechanism. Numerous experimental results demonstrate the proposed method outperforms common LRP.


2019 ◽  
Vol 11 (11) ◽  
pp. 1316 ◽  
Author(s):  
Li Wang ◽  
Xueru Bai ◽  
Feng Zhou

In recent studies, synthetic aperture radar (SAR) automatic target recognition (ATR) algorithms that are based on the convolutional neural network (CNN) have achieved high recognition rates in the moving and stationary target acquisition and recognition (MSTAR) dataset. However, in a SAR ATR task, the feature maps with little information automatically learned by CNN will disturb the classifier. We design a new enhanced squeeze and excitation (enhanced-SE) module to solve this problem, and then propose a new SAR ATR network, i.e., the enhanced squeeze and excitation network (ESENet). When compared to the available CNN structures that are designed for SAR ATR, the ESENet can extract more effective features from SAR images and obtain better generalization performance. In the MSTAR dataset containing pure targets, the proposed method achieves a recognition rate of 97.32% and it exceeds the available CNN-based SAR ATR algorithms. Additionally, it has shown robustness to large depression angle variation, configuration variants, and version variants.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xiang Chen ◽  
Xing Wang ◽  
You Chen ◽  
Haihan Wang

Synthetic aperture radar (SAR) image target recognition technology is aimed at automatically determining the presence or absence of target information from the input SAR image and improving the efficiency and accuracy of SAR image interpretation. Based on big data analysis, dirty data is removed, clean data is returned, and standardized processing of SAR image data is realized. At the same time, by establishing a statistical model of coherent speckles, the convolutional autoencoder is used to denoise the SAR image. Finally, the network model modified by softmax cross-entropy loss and Fisher loss is used for automatic target recognition. Based on the MSTAR data set, two scene graphs containing the target synthesized by the background image and the target slice are used for experiments. Several comparative experiments have verified the effectiveness of the classification and recognition model in this paper.


2021 ◽  
Vol 13 (20) ◽  
pp. 4139
Author(s):  
Zhenpeng Feng ◽  
Hongbing Ji ◽  
Ljubiša Stanković ◽  
Jingyuan Fan ◽  
Mingzhe Zhu

Convolutional neural networks (CNNs) have successfully achieved high accuracy in synthetic aperture radar (SAR) target recognition; however, the intransparency of CNNs is still a limiting or even disqualifying factor. Therefore, visually interpreting CNNs with SAR images has recently drawn increasing attention. Various class activation mapping (CAM) methods are adopted to discern the relationship between CNN’s decision and image regions. Unfortunately, most existing CAM methods are based on optical images; thus, they usually lead to a limiting visualization effect for SAR images. Although a recently proposed Self-Matching CAM can obtain a satisfactory effect for SAR images, it is quite time-consuming, due to there being hundreds of self-matching operations per image. G-SM-CAM reduces the time of such operation dramatically, but at the cost of visualization effect. Based on the limitations of the above methods, we propose an efficient method, Spectral-Clustering Self-Matching CAM (SC-SM CAM). Spectral clustering is first adopted to divide feature maps into groups for efficient computation. In each group, similar feature maps are merged into an enhanced feature map with more concentrated energy in a specific region; thus, the saliency heatmaps may more accurately tally with the target. Experimental results demonstrate that SC-SM CAM outperforms other SOTA CAM methods in both effect and efficiency.


2021 ◽  
Vol 13 (8) ◽  
pp. 1455
Author(s):  
Jifang Pei ◽  
Weibo Huo ◽  
Chenwei Wang ◽  
Yulin Huang ◽  
Yin Zhang ◽  
...  

Multiview synthetic aperture radar (SAR) images contain much richer information for automatic target recognition (ATR) than a single-view one. It is desirable to establish a reasonable multiview ATR scheme and design effective ATR algorithm to thoroughly learn and extract that classification information, so that superior SAR ATR performance can be achieved. Hence, a general processing framework applicable for a multiview SAR ATR pattern is first given in this paper, which can provide an effective approach to ATR system design. Then, a new ATR method using a multiview deep feature learning network is designed based on the proposed multiview ATR framework. The proposed neural network is with a multiple input parallel topology and some distinct deep feature learning modules, with which significant classification features, the intra-view and inter-view features existing in the input multiview SAR images, will be learned simultaneously and thoroughly. Therefore, the proposed multiview deep feature learning network can achieve an excellent SAR ATR performance. Experimental results have shown the superiorities of the proposed multiview SAR ATR method under various operating conditions.


2021 ◽  
Vol 13 (4) ◽  
pp. 596
Author(s):  
David Vint ◽  
Matthew Anderson ◽  
Yuhao Yang ◽  
Christos Ilioudis ◽  
Gaetano Di Caterina ◽  
...  

In recent years, the technological advances leading to the production of high-resolution Synthetic Aperture Radar (SAR) images has enabled more and more effective target recognition capabilities. However, high spatial resolution is not always achievable, and, for some particular sensing modes, such as Foliage Penetrating Radars, low resolution imaging is often the only option. In this paper, the problem of automatic target recognition in Low Resolution Foliage Penetrating (FOPEN) SAR is addressed through the use of Convolutional Neural Networks (CNNs) able to extract both low and high level features of the imaged targets. Additionally, to address the issue of limited dataset size, Generative Adversarial Networks are used to enlarge the training set. Finally, a Receiver Operating Characteristic (ROC)-based post-classification decision approach is used to reduce classification errors and measure the capability of the classifier to provide a reliable output. The effectiveness of the proposed framework is demonstrated through the use of real SAR FOPEN data.


Sign in / Sign up

Export Citation Format

Share Document