scholarly journals Centroid Error Analysis of Beacon Tracking under Atmospheric Turbulence for Optical Communication Links

2021 ◽  
Vol 13 (10) ◽  
pp. 1931
Author(s):  
Hyung-Chul Lim ◽  
Chul-Sung Choi ◽  
Ki-Pyoung Sung ◽  
Jong-Uk Park ◽  
Mansoo Choi

Optical satellite communication has received considerable attention as a promising alternative to radio frequency communication because of its potential advantages including higher data rates and license free spectrum. Many studies have conducted performance analyses of optical communication channels, but few have investigated beacon tracking channels under atmospheric turbulence. The centroid accuracy of beacon tracking channels is limited by not only noise sources, but also a finite delay time, which also fluctuates due to atmospheric turbulence. Consequently, the centroid error is an important figure of merit when evaluating the performance of a beacon tracking system. In this study, the closed-form expressions were derived for average centroid error and fade probability, based on received photoelectron counts depending on exposure time, taking into account the log-normal tracking channels. We analyzed the angular positioning performance of beacon tracking detectors onboard small satellites in the presence of atmospheric turbulence, in terms of centroid error and fade probability. We found that an optimal exposure time exists, which minimizes the centroid error, and that fade probability is inversely proportional to the exposure time. These are significant properties to consider in the design of beacon tracking systems.

Author(s):  
Giulio Fanti ◽  
Roberto Basso

The problem of exposure-time optimization in digital images acquired by a tripod-camera vibrating system is examined in this paper and an initial analysis is presented. The different noise sources concerning both the acquisition sensor in the camera and external vibrations were studied and quantified in some specific cases. The digital image quality is then discussed in terms of the MTF function evaluated at 50% level in order to define what the optimum ranges of exposure-times are.


Sign in / Sign up

Export Citation Format

Share Document