scholarly journals Intelligent Recognition Method of Low-Altitude Squint Optical Ship Target Fused with Simulation Samples

2021 ◽  
Vol 13 (14) ◽  
pp. 2697
Author(s):  
Bo Liu ◽  
Qi Xiao ◽  
Yuhao Zhang ◽  
Wei Ni ◽  
Zhen Yang ◽  
...  

To address the problem of intelligent recognition of optical ship targets under low-altitude squint detection, we propose an intelligent recognition method based on simulation samples. This method comprehensively considers geometric and spectral characteristics of ship targets and ocean background and performs full link modeling combined with the squint detection atmospheric transmission model. It also generates and expands squint multi-angle imaging simulation samples of ship targets in the visible light band using the expanded sample type to perform feature analysis and modification on SqueezeNet. Shallow and deeper features are combined to improve the accuracy of feature recognition. The experimental results demonstrate that using simulation samples to expand the training set can improve the performance of the traditional k-nearest neighbors algorithm and modified SqueezeNet. For the classification of specific ship target types, a mixed-scene dataset expanded with simulation samples was used for training. The classification accuracy of the modified SqueezeNet was 91.85%. These results verify the effectiveness of the proposed method.

2011 ◽  
Vol 415-417 ◽  
pp. 523-526
Author(s):  
Yan Dong ◽  
Mei Li

This paper put forward a geometry feature recognition method of part drawing based on graph matching. Describe the constraints structure of geometric feature in geometric elements and those constraint relationships. Match sub-graph in contour closure graphics and those combination. Using linear symbol notation of chemical compounds in chemical database for reference, encode to constraint structure of geometry graphics, establish recognition mechanism of geometric characteristics by structure codes. Taking the fine-tune screw and fork parts for example, this method has been proved to be effective.


Author(s):  
Eric Wang

Abstract Interfacing CAD to CAPP (computer-aided process planning) is crucial to the eventual success of a fully-automated computer-integrated manufacturing (CIM) environment. Current CAD and CAPP systems are separated by a “semantic gap” that represents a fundamental difference in the ways in which they represent information. This semantic gap makes the interfacing of CAD to CAPP a non-trivial task. This paper argues that automatic feature recognition is an indispensable technique in interfacing CAD to CAPP. It then surveys the current literature on automatic feature recognition methods and systems, and analyzes their suitability as CAD/CAPP interfaces. It also describes a relatively recent automatic feature recognition method based on volumetric decomposition, using Kim’s alternating sum of volumes with partitioning (ASVP) algorithm. The paper’s main theses are: (1) that most previous automatic feature recognition approaches are ultimately based on pattern-matching; (2) that pattern-matching approaches are unlikely to scale up to the real world; and (3) that volumetric decomposition is an alternative to pattern-matching that avoids its shortcomings. The paper concludes that automatic feature recognition by volumetric decomposition is a promising approach to the interfacing of CAD to CAPP.


2018 ◽  
Vol 11 (6) ◽  
pp. 2139-2152 ◽  
Author(s):  
Rosa Delia García ◽  
Africa Barreto ◽  
Emilio Cuevas ◽  
Julian Gröbner ◽  
Omaira Elena García ◽  
...  

Abstract. A 7-year (2010–2016) comparison study between measured and simulated longwave downward radiation (LDR) under cloud-free conditions was performed at the Izaña Atmospheric Observatory (IZO, Spain). This analysis encompasses a total of 2062 cases distributed approximately evenly between day and night. Results show an excellent agreement between Baseline Surface Radiation Network (BSRN) measurements and simulations with libRadtran V2.0.1 and MODerate resolution atmospheric TRANsmission model (MODTRAN) V6 radiative transfer models (RTMs). Mean bias (simulated − measured) of  <  1.1 % and root mean square of the bias (RMS) of  <  1 % are within the instrumental error (2 %). These results highlight the good agreement between the two RTMs, proving to be useful tools for the quality control of LDR observations and for detecting temporal drifts in field instruments. The standard deviations of the residuals, associated with the RTM input parameters uncertainties are rather small, 0.47 and 0.49 % for libRadtran and MODTRAN, respectively, at daytime, and 0.49 to 0.51 % at night-time. For precipitable water vapor (PWV)  >  10 mm, the observed night-time difference between models and measurements is +5 W m−2 indicating a scale change of the World Infrared Standard Group of Pyrgeometers (WISG), which serves as reference for atmospheric longwave radiation measurements. Preliminary results suggest a possible impact of dust aerosol on infrared radiation during daytime that might not be correctly parametrized by the models, resulting in a slight underestimation of the modeled LDR, of about −3 W m−2, for relatively high aerosol optical depth (AOD  >  0.20).


Author(s):  
Sreekumar Menon ◽  
Yong Se Kim

Abstract Form features intrinsic to the product shape can be recognized using a convex decomposition called Alternating Sum of Volumes with Partitioning (ASVP). However, the domain of geometric objects to which ASVP decomposition can be applied had been limited to polyhedral solids due to the difficulty of convex hull construction for solids with curved boundary faces. We develop an approach to extend the geometric domain to solids having cylindrical and blending features. Blending surfaces are identified and removed from the boundary representation of the solid, and a polyhedral model of the unblended solid is generated while storing the cylindrical geometric information. From the ASVP decomposition of the polyhedral model, polyhedral form features are recognized. Form feature decomposition of the original solid is then obtained by reattaching the stored blending and cylindrical information to the form feature components of its polyhedral model. In this way, a larger domain of solids can be covered by the feature recognition method using ASVP decomposition. In this paper, handling of blending features in this approach is described.


Author(s):  
James K. Coles ◽  
Richard H. Crawford ◽  
Kristin L. Wood

Abstract A new feature recognition method is presented that generates volumetric feature representations from conventional boundary representations of mechanical parts. Recognition is accomplished by decomposing the known total feature volume of a part into a set of smaller volumes through analytic face extension. The decomposed volumes are combined to generate an initial set of features. Alternative sets of features are generated by maintaining and evaluating information on intersections of the initial feature set. The capabilities of the method are demonstrated through both a hypothetical and a real world design example. The method’s ability to locate features despite interactions with other features, and its ability to generate alternative sets of features, distinguishes it from existing recognition techniques.


Sign in / Sign up

Export Citation Format

Share Document