scholarly journals Comparison of observed and modeled cloud-free longwave downward radiation (2010–2016) at the high mountain BSRN Izaña station

2018 ◽  
Vol 11 (6) ◽  
pp. 2139-2152 ◽  
Author(s):  
Rosa Delia García ◽  
Africa Barreto ◽  
Emilio Cuevas ◽  
Julian Gröbner ◽  
Omaira Elena García ◽  
...  

Abstract. A 7-year (2010–2016) comparison study between measured and simulated longwave downward radiation (LDR) under cloud-free conditions was performed at the Izaña Atmospheric Observatory (IZO, Spain). This analysis encompasses a total of 2062 cases distributed approximately evenly between day and night. Results show an excellent agreement between Baseline Surface Radiation Network (BSRN) measurements and simulations with libRadtran V2.0.1 and MODerate resolution atmospheric TRANsmission model (MODTRAN) V6 radiative transfer models (RTMs). Mean bias (simulated − measured) of  <  1.1 % and root mean square of the bias (RMS) of  <  1 % are within the instrumental error (2 %). These results highlight the good agreement between the two RTMs, proving to be useful tools for the quality control of LDR observations and for detecting temporal drifts in field instruments. The standard deviations of the residuals, associated with the RTM input parameters uncertainties are rather small, 0.47 and 0.49 % for libRadtran and MODTRAN, respectively, at daytime, and 0.49 to 0.51 % at night-time. For precipitable water vapor (PWV)  >  10 mm, the observed night-time difference between models and measurements is +5 W m−2 indicating a scale change of the World Infrared Standard Group of Pyrgeometers (WISG), which serves as reference for atmospheric longwave radiation measurements. Preliminary results suggest a possible impact of dust aerosol on infrared radiation during daytime that might not be correctly parametrized by the models, resulting in a slight underestimation of the modeled LDR, of about −3 W m−2, for relatively high aerosol optical depth (AOD  >  0.20).

2018 ◽  
Author(s):  
Rosa Delia García ◽  
Africa Barreto ◽  
Emilio Cuevas ◽  
Julian Gröbner ◽  
Omaira Elena García ◽  
...  

Abstract. A 7-year (2010–2016) comparison study between measured and simulated longwave downward radiation (LDR) under cloud-free conditions has been performed at the Izaña Atmospheric Observatory (IZO, Spain). This analysis encompasses a total of 2062 cases distributed almost 50 % between day and night. Results show an excellent agreement between Baseline Surface Radiation Network (BSRN) measurements and simulations with LibRadtran V2.0.1 and MODTRAN V6 radiative transfer models (RTM), similar for both models. Mean bias (simulated-measured)


2017 ◽  
Author(s):  
Stephan Nyeki ◽  
Stefan Wacker ◽  
Julian Gröbner ◽  
Wolfgang Finsterle ◽  
Martin Wild

Abstract. A large number of radiometers are traceable to the World Standard Group (WSG) for shortwave radiation and the interim World Infra-red Standard Group (WISG) for longwave radiation, hosted by the Physikalisch Meteorologisches Observatorium Davos/World Radiation Centre (PMOD/WRC, Davos, Switzerland). The WSG and WISG have recently been found to over- and underestimate radiation values, respectively (Fehlmann et al., 2012; Gröbner et al., 2014), although research is still ongoing. In view of a possible revision of the reference scales of both standard groups, this study discusses the methods involved, and the implications on existing archives of radiation time-series, such as the Baseline Surface Radiation Network (BSRN). Based on PMOD/WRC calibration archives and BSRN data archives, the downward longwave radiation (DLR) time-series over the 2006–2015 periods were analysed at four stations (polar and mid-latitude locations). DLR was found to increase by up to 3.5 and 5.4 W m−2, respectively, after applying a WISG reference scale correction and a minor correction for the dependence of pyrgeometer sensitivity on atmospheric integrated water vapour content. Similar increases in DLR may be expected at other BSRN stations. Based on our analysis, a number of recommendations are made for future studies.


2017 ◽  
Vol 10 (8) ◽  
pp. 3057-3071 ◽  
Author(s):  
Stephan Nyeki ◽  
Stefan Wacker ◽  
Julian Gröbner ◽  
Wolfgang Finsterle ◽  
Martin Wild

Abstract. A large number of radiometers are traceable to the World Standard Group (WSG) for shortwave radiation and the interim World Infrared Standard Group (WISG) for longwave radiation, hosted by the Physikalisch-Meteorologisches Observatorium Davos/World Radiation Centre (PMOD/WRC, Davos, Switzerland). The WSG and WISG have recently been found to over- and underestimate radiation values, respectively (Fehlmann et al., 2012; Gröbner et al., 2014), although research is still ongoing. In view of a possible revision of the reference scales of both standard groups, this study discusses the methods involved and the implications on existing archives of radiation time series, such as the Baseline Surface Radiation Network (BSRN). Based on PMOD/WRC calibration archives and BSRN data archives, the downward longwave radiation (DLR) time series over the 2006–2015 period were analysed at four stations (polar and mid-latitude locations). DLR was found to increase by up to 3.5 and 5.4 W m−2 for all-sky and clear-sky conditions, respectively, after applying a WISG reference scale correction and a minor correction for the dependence of pyrgeometer sensitivity on atmospheric integrated water vapour content. Similar increases in DLR may be expected at other BSRN stations. Based on our analysis, a number of recommendations are made for future studies.


2021 ◽  
Vol 13 (14) ◽  
pp. 2697
Author(s):  
Bo Liu ◽  
Qi Xiao ◽  
Yuhao Zhang ◽  
Wei Ni ◽  
Zhen Yang ◽  
...  

To address the problem of intelligent recognition of optical ship targets under low-altitude squint detection, we propose an intelligent recognition method based on simulation samples. This method comprehensively considers geometric and spectral characteristics of ship targets and ocean background and performs full link modeling combined with the squint detection atmospheric transmission model. It also generates and expands squint multi-angle imaging simulation samples of ship targets in the visible light band using the expanded sample type to perform feature analysis and modification on SqueezeNet. Shallow and deeper features are combined to improve the accuracy of feature recognition. The experimental results demonstrate that using simulation samples to expand the training set can improve the performance of the traditional k-nearest neighbors algorithm and modified SqueezeNet. For the classification of specific ship target types, a mixed-scene dataset expanded with simulation samples was used for training. The classification accuracy of the modified SqueezeNet was 91.85%. These results verify the effectiveness of the proposed method.


2021 ◽  
Vol 13 (9) ◽  
pp. 1627
Author(s):  
Chermelle B. Engel ◽  
Simon D. Jones ◽  
Karin J. Reinke

This paper introduces an enhanced version of the Biogeographical Region and Individual Geostationary HHMMSS Threshold (BRIGHT) algorithm. The algorithm runs in real-time and operates over 24 h to include both daytime and night-time detections. The algorithm was executed and tested on 12 months of Himawari-8 data from 1 April 2019 to 31 March 2020, for every valid 10-min observation. The resulting hotspots were compared to those from the Visible Infrared Imaging Radiometer Suite (VIIRS) and the Moderate Resolution Imaging Spectroradiometer (MODIS). The modified BRIGHT hotspots matched with fire detections in VIIRS 96% and MODIS 95% of the time. The number of VIIRS and MODIS hotspots with matches in the coincident modified BRIGHT dataset was lower (at 33% and 46%, respectively). This paper demonstrates a clear link between the number of VIIRS and MODIS hotspots with matches and the minimum fire radiative power considered.


2015 ◽  
Vol 19 (2) ◽  
pp. 1-18 ◽  
Author(s):  
Ayan H. Chaudhuri ◽  
Rui M. Ponte

Abstract The authors examine five recent reanalysis products [NCEP Climate Forecast System Reanalysis (CFSR), Modern-Era Retrospective Analysis for Research and Applications (MERRA), Japanese 25-year Reanalysis Project (JRA-25), Interim ECMWF Re-Analysis (ERA-Interim), and Arctic System Reanalysis (ASR)] for 1) trends in near-surface radiation fluxes, air temperature, and humidity, which are important indicators of changes within the Arctic Ocean and also influence sea ice and ocean conditions, and 2) fidelity of these atmospheric fields and effects for an extreme event: namely, the 2007 ice retreat. An analysis of trends over the Arctic for the past decade (2000–09) shows that reanalysis solutions have large spreads, particularly for downwelling shortwave radiation. In many cases, the differences in significant trends between the five reanalysis products are comparable to the estimated trend within a particular product. These discrepancies make it difficult to establish a consensus on likely changes occurring in the Arctic solely based on results from reanalyses fields. Regarding the 2007 ice retreat event, comparisons with remotely sensed estimates of downwelling radiation observations against these reanalysis products present an ambiguity. Remotely sensed observations from a study cited herewith suggest a large increase in downwelling summertime shortwave radiation and decrease in downwelling summertime longwave radiation from 2006 and 2007. On the contrary, the reanalysis products show only small gains in summertime shortwave radiation, if any; however, all the products show increases in downwelling longwave radiation. Thus, agreement within reanalysis fields needs to be further checked against observations to assess possible biases common to all products.


Author(s):  
Houaria Namaoui ◽  
Salem Kahlouche ◽  
Ahmed Hafidh Belbachir

Remote sensing of atmospheric water vapour using GNSS and Satellite data has become an efficient tool in meteorology and climate research. Many satellite data have been increasingly used to measure the content of water vapour in the atmosphere and to characterize its temporal and spatial variations. In this paper, we have used observations from radiosonde data collected from three stations (Algiers, Bechar and Tamanrasset) in Algeria from January to December 2012 to evaluate Moderate Resolution Imaging Spectroradiometer (MODIS) total precipitable water vapour (PWV) products. Results show strong agreement between the total precipitable water contents estimated based on radiosondes observations and the ones measured by the sensor MODIS with the correlation coefficients in the range 0.69 to 0.95 and a mean bias, which does not exceed 1.5.  


Author(s):  
S. V. S. Sai Krishna ◽  
P. Manavalan ◽  
P. V. N. Rao

Daily net surface radiation fluxes are estimated for Indian land mass at spatial grid intervals of 0.1 degree. Two approaches are employed to obtain daily net radiation for four sample days viz., November 19, 2013, December 16, 2013, January 8, 2014 and March 20, 2014. Both the approaches compute net shortwave and net longwave fluxes, separately and sum them up to obtain net radiation. The first approach computes net shortwave radiation using daily insolation product of Kalpana VHRR and 15 days time composited broadband albedo product of Oceansat OCM2. The net outgoing longwave radiation is computed using Stefan Boltzmann equation corrected for humidity and cloudiness. In the second approach, instantaneous clear-sky net-shortwave radiation is estimated using computed clear-sky incoming shortwave radiation and the gridded MODIS 16-day time composited albedo product. The net longwave radiation is obtained by estimating outgoing and incoming longwave radiation fluxes, independently. In this, MODIS derived surface emissivity and skin temperature parameters are used for estimating outgoing longwave radiation component. In both the approaches, surface air temperature data required for estimation of net longwave radiation fluxes are extracted from India Meteorological Department’s (IMD) Automatic Weather Station (AWS) records. Estimates by the two different approaches are evaluated by comparing daily net radiation fluxes with CERES based estimates corresponding to the sample days, through statistical measures. The estimated all sky daily net radiation using the first approach compared well with CERES SYN1deg daily average net radiation with r<sup>2</sup> values of the order of 0.7 and RMS errors of the order of 8&ndash;16 w/m<sup>2</sup>.


1985 ◽  
Vol 6 ◽  
pp. 238-241 ◽  
Author(s):  
Takashi Yamanouchi ◽  
Sadao Kawaguchi

Effects of drifting snow are examined from measurements of radiation fluxes at Mizuho Station in the katabatic wind zone, Antarctica. A good correlation is found between the difference of downward longwave fluxes measured at two heights and wind speed used as an index of drifting snow. The wind increases the downward flux at a rate of 2 W m-2/m s-2 when wind speed is higher than 13 m/s. Drifting snow suppresses the net longwave cooling at the surface. Direct solar radiation is depleted greatly by the drifting snow; however, the global flux decreases only slightly, compensated by the large increase of the diffuse flux, at a rate of about 1% for each 1 m/s increase in wind speed. At Mizuho Station, the effect on longwave radiation prevails throughout the year. The relation between snow drift content and wind speed is obtained from shortwave optical depth measurements as a function of wind speed. A simple parameterization of radiative properties is given.


Sign in / Sign up

Export Citation Format

Share Document