scholarly journals A LiDAR/Visual SLAM Backend with Loop Closure Detection and Graph Optimization

2021 ◽  
Vol 13 (14) ◽  
pp. 2720
Author(s):  
Shoubin Chen ◽  
Baoding Zhou ◽  
Changhui Jiang ◽  
Weixing Xue ◽  
Qingquan Li

LiDAR (light detection and ranging), as an active sensor, is investigated in the simultaneous localization and mapping (SLAM) system. Typically, a LiDAR SLAM system consists of front-end odometry and back-end optimization modules. Loop closure detection and pose graph optimization are the key factors determining the performance of the LiDAR SLAM system. However, the LiDAR works at a single wavelength (905 nm), and few textures or visual features are extracted, which restricts the performance of point clouds matching based loop closure detection and graph optimization. With the aim of improving LiDAR SLAM performance, in this paper, we proposed a LiDAR and visual SLAM backend, which utilizes LiDAR geometry features and visual features to accomplish loop closure detection. Firstly, the bag of word (BoW) model, describing the visual similarities, was constructed to assist in the loop closure detection and, secondly, point clouds re-matching was conducted to verify the loop closure detection and accomplish graph optimization. Experiments with different datasets were carried out for assessing the proposed method, and the results demonstrated that the inclusion of the visual features effectively helped with the loop closure detection and improved LiDAR SLAM performance. In addition, the source code, which is open source, is available for download once you contact the corresponding author.

Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3445
Author(s):  
Krzysztof Ćwian ◽  
Michał R. Nowicki ◽  
Jan Wietrzykowski ◽  
Piotr Skrzypczyński

Although visual SLAM (simultaneous localization and mapping) methods obtain very accurate results using optimization of residual errors defined with respect to the matching features, the SLAM systems based on 3-D laser (LiDAR) data commonly employ variants of the iterative closest points algorithm and raw point clouds as the map representation. However, it is possible to extract from point clouds features that are more spatially extended and more meaningful than points: line segments and/or planar patches. In particular, such features provide a natural way to represent human-made environments, such as urban and mixed indoor/outdoor scenes. In this paper, we perform an analysis of the advantages of a LiDAR-based SLAM that employs high-level geometric features in large-scale urban environments. We present a new approach to the LiDAR SLAM that uses planar patches and line segments for map representation and employs factor graph optimization typical to state-of-the-art visual SLAM for the final map and trajectory optimization. The new map structure and matching of features make it possible to implement in our system an efficient loop closure method, which exploits learned descriptors for place recognition and factor graph for optimization. With these improvements, the overall software structure is based on the proven LOAM concept to ensure real-time operation. A series of experiments were performed to compare the proposed solution to the open-source LOAM, considering different approaches to loop closure computation. The results are compared using standard metrics of trajectory accuracy, focusing on the final quality of the estimated trajectory and the consistency of the environment map. With some well-discussed reservations, our results demonstrate the gains due to using the high-level features in the full-optimization approach in the large-scale LiDAR SLAM.


2021 ◽  
Vol 2120 (1) ◽  
pp. 012026
Author(s):  
J C Ho ◽  
S K Phang ◽  
H K Mun

Abstract Unmanned aerial vehicle (UAV) is widely used by many industries these days such as militaries, agriculture, and surveillance. However, one of the main challenges of UAV is navigating through an environment where global positioning system (GPS) is being denied. The main purpose of this paper is to find a solution for UAV to be able to navigate in a GPS denied surrounding without affecting the drone flight performance. There are two ways to overcome these challenges such as using visual odometry (VO) or by using simultaneous localization and mapping (SLAM). However, VO has a drawback because camera sensors require good lighting which will affect the performance of the UAV when it is navigating through a low light intensity environment. Hence, in this paper 2-D SLAM will be use as a solution to help UAV to navigate under a GPS-denied environment with the help of a light detection and ranging (LIDAR) sensor which known as a LIDAR-based SLAM. This is because SLAM can help UAVs to localize itself and map the surrounding of the environment. The concept and idea of this paper will be fully simulated using MATLAB, where the drone navigation will be simulated in MATLAB to extract LIDAR data and to use the LIDAR data to carry out SLAM via pose graph optimization. Besides, the contribution to this research work has also identified that in pose graph optimization, the loop closure threshold and loop closure radius play an important role. The loop closure threshold can affect the accuracy of the trajectory of the drone and the accuracy of mapping the environment as compared to ground truth. On the other hand, the loop closure search radius can increase the processing speed of obtaining the data via pose graph optimization. The main contribution to this research work is shown that the processing speed can increase up to 45 % and the accuracy of the trajectory of the drone and the mapped surrounding is quite accurate as compared to ground truth.


2021 ◽  
Vol 11 (11) ◽  
pp. 4968
Author(s):  
Wentao Zhang ◽  
Guodong Zhai ◽  
Zhongwen Yue ◽  
Tao Pan ◽  
Ran Cheng

The autonomous positioning of tunneling equipment is the key to intellectualization and robotization of a tunneling face. In this paper, a method based on simultaneous localization and mapping (SLAM) to estimate the body pose of a roadheader and build a navigation map of a roadway is presented. In terms of pose estimation, an RGB-D camera is used to collect images, and a pose calculation model of a roadheader is established based on random sample consensus (RANSAC) and iterative closest point (ICP); constructing a pose graph optimization model with closed-loop constraints. An iterative equation based on Levenberg–Marquadt is derived-, which can achieve the optimal estimation of the body pose. In terms of mapping, LiDAR is used to experimentally construct the grid map based on open-source algorithms, such as Gmapping, Cartographer, Karto, and Hector. A point cloud map, octree map, and compound map are experimentally constructed based on the open-source library RTAB-MAP. By setting parameters, such as the expansion radius of an obstacle and the updating frequency of the map, a cost map for the navigation of a roadheader is established. Combined with algorithms, such as Dijskra and timed-elastic-band, simulation experiments show that the combination of octree map and cost map can support global path planning and local obstacle avoidance.


Author(s):  
Dario F. Mendieta ◽  
Francisco Raverta Capua ◽  
Juan Jose Tarrio ◽  
Marcelo L. Moreyra

2018 ◽  
Vol 42 (7) ◽  
pp. 1323-1335 ◽  
Author(s):  
Fei Han ◽  
Hua Wang ◽  
Guoquan Huang ◽  
Hao Zhang

Sign in / Sign up

Export Citation Format

Share Document