scholarly journals Response of Total Suspended Sediment and Chlorophyll-a Concentration to Late Autumn Typhoon Events in the Northwestern South China Sea

2021 ◽  
Vol 13 (15) ◽  
pp. 2863
Author(s):  
Junyi Li ◽  
Huiyuan Zheng ◽  
Lingling Xie ◽  
Quanan Zheng ◽  
Zheng Ling ◽  
...  

Strong typhoon winds enhance turbulent mixing, which induces sediment to resuspend and to promote chlorophyll-a (Chl-a) blooms in the continental shelf areas. In this study, we find limited Chl-a responses to three late autumn typhoons (typhoon Nesat, Mujigae and Khanun) in the northwestern South China Sea (NWSCS) using satellite observations. In climatology, the Chl-a and total suspended sediment (TSS) concentrations are high all year round with higher value in autumn in the offshore area of the NWSCS. After the typhoon passage, the Chl-a concentration increases slightly (23%), while even TSS enhances by 280% on the wide continental shelf of the NWSCS. However, in the southern area, located approximately 100 km from the typhoon tracks, both TSS and Chl-a concentrations increase 160% and 150% after typhoon passage, respectively. In the deeper area, the increased TSS concentration is responsible for the considerable increase of the Chl-a. An empirical analysis is applied to the data, which reveals the TSS and Chl-a processes during typhoon events. The results of this study suggest a different mechanism for Chl-a concentration increase and thus contribute toward further evaluation of typhoon-induced biological responses.

2020 ◽  
Vol 13 (1) ◽  
pp. 30
Author(s):  
Wenlong Xu ◽  
Guifen Wang ◽  
Long Jiang ◽  
Xuhua Cheng ◽  
Wen Zhou ◽  
...  

The spatiotemporal variability of phytoplankton biomass has been widely studied because of its importance in biogeochemical cycles. Chlorophyll a (Chl-a)—an essential pigment present in photoautotrophic organisms—is widely used as an indicator for oceanic phytoplankton biomass because it could be easily measured with calibrated optical sensors. However, the intracellular Chl-a content varies with light, nutrient levels, and temperature and could misrepresent phytoplankton biomass. In this study, we estimated the concentration of phytoplankton carbon—a more suitable indicator for phytoplankton biomass—using a regionally adjusted bio-optical algorithm with satellite data in the South China Sea (SCS). Phytoplankton carbon and the carbon-to-Chl-a ratio (θ) exhibited considerable variability spatially and seasonally. Generally, phytoplankton carbon in the northern SCS was higher than that in the western and central parts. The regional monthly mean phytoplankton carbon in the northern SCS showed a prominent peak during December and January. A similar pattern was shown in the central part of SCS, but its peak was weaker. Besides the winter peak, the western part of SCS had a secondary maximum of phytoplankton carbon during summer. θ exhibited significant seasonal variability in the northern SCS, but a relatively weak seasonal change in the western and central parts. θ had a peak in September and a trough in January in the northern and central parts of SCS, whereas in the western SCS the minimum and maximum θ was found in August and during October–April of the following year, respectively. Overall, θ ranged from 26.06 to 123.99 in the SCS, which implies that the carbon content could vary up to four times given a specific Chl-a value. The variations in θ were found to be related to changing phytoplankton community composition, as well as dynamic phytoplankton physiological activities in response to environmental influences; which also exhibit much spatial differences in the SCS. Our results imply that the spatiotemporal variability of θ should be considered, rather than simply used a single value when converting Chl-a to phytoplankton carbon biomass in the SCS, especially, when verifying the simulation results of biogeochemical models.


2020 ◽  
Vol 12 (3) ◽  
pp. 480
Author(s):  
Zhaohui Han ◽  
Yijun He ◽  
Guoqiang Liu ◽  
William Perrie

The Data Interpolating Empirical Orthogonal Functions (DINEOF) method has demonstrated usability and accuracy for filling spatial gaps in remote sensing datasets. In this study, we conducted the reconstruction of the chlorophyll-a concentration (Chl-a) data using a convolutional neural networks model called Data-Interpolating Convolutional Auto-Encoder (DINCAE), and we compared its performance with that of DINEOF. Furthermore, the cloud-free sea surface temperature (SST) was used as a phytoplankton dynamics predictor for the Chl-a reconstruction. Finally, four reconstruction schemes were implemented: DINCAE (Chl-a only), DINCAE (Chl-a and SST), DINEOF (Chl-a only), and DINEOF (Chl-a and SST), denoted rec1, rec2, rec3, and rec4 respectively. To quantitatively evaluate the accuracy of these reconstruction schemes, both the cross-validation and in situ data were used. The study domain was chosen to be the Northern South China Sea (SCS) and West Philippine Sea (WPS), bounded by 115–125°E and 16–24°N to test the model performance for the reconstruction of Chl-a under different Chl-a controlling mechanisms. The in situ validation showed that rec1 performs best among the four reconstruction schemes, and that adding SST into the Chl-a reconstruction cannot improve the reconstruction results. However, for cross validation, adding SST can slightly improve spatial distributions of the root mean square error (RMSE) between the reconstructed data and the original data, especially over the SCS continental shelf. Furthermore, the potential of DINCAE prediction is confirmed in this paper; thus, the trained DINCAE model can be re-applied to reconstruct other missing data, and more importantly, it can also be re-trained using the reconstructed data, thereby further improving reconstruction results. Another consideration is efficiency; with similar reconstruction conditions, DINCAE is 5–10 times faster than DINEOF.


2021 ◽  
Vol 13 (6) ◽  
pp. 1194
Author(s):  
Shuhong Liu ◽  
Danling Tang ◽  
Hong Yan ◽  
Guicai Ning ◽  
Chengcheng Liu ◽  
...  

Low-level jet (LLJ) significantly affects the synoptic-scale hydrometeorological conditions in the South China Sea, although the impact of LLJs on the marine ecological environment is still unclear. We used multi-satellite observation data and meteorological reanalysis datasets to study the potential impact of LLJs on the marine biophysical environment over the Beibuwan Gulf (BBG) in summer during 2015–2019. In terms of the summer average, the sea surface wind vectors on LLJ days became stronger in the southwesterly direction relative to those on non-LLJ days, resulting in enhanced Ekman pumping (the maximum upwelling exceeds 10 × 10−6 m s−1) in most areas of the BBG, accompanied by stronger photosynthetically active radiation (increased by about 20 μmol m−2 s−1) and less precipitation (decreased by about 3 mm day−1). These LLJ-induced hydrometeorological changes led to an increase of about 0.3 °C in the nearshore sea surface temperature and an increase of 0.1–0.5 mg m−3 (decrease of 0.1–0.3 mg m−3) in the chlorophyll-a (chl-a) concentrations in nearshore (offshore) regions. Intraseasonal and diurnal changes in the incidence and intensity of LLJs potentially resulted in changes in the biophysical ocean environment in nearshore regions on intraseasonal and semi-diurnal timescales. The semi-diurnal peak and amplitude of chl-a concentrations on LLJ days increased with respect to those on non-LLJ days. Relative to the southern BBG, LLJ events exhibit greater impacts on the northern BBG, causing increases of the semi-diurnal peak and amplitude with 1.5 mg m−3 and 0.7 mg m−3, respectively. This work provides scientific evidence for understanding the potential mechanism of synoptic-scale changes in the marine ecological environment in marginal seas with frequent LLJ days.


2015 ◽  
Vol 2015 ◽  
pp. 1-19 ◽  
Author(s):  
Xiao-dong Shang ◽  
Hai-bin Zhu ◽  
Gui-ying Chen ◽  
Chi Xu ◽  
Qi Yang

The effects of 8 typhoons which passed by coldcore eddy (CCE) areas in the South China Sea (SCS) from 1997 to 2009 were observed and evaluated. The changes in the preexisting CCE acted upon by typhoons were described by eddy kinetic energy (EKE) and eddy available gravitational potential energy (EAGPE). The mechanical energy of CCE was estimated from a two-layer reduced gravity model. Comparing with the scenario that typhoon passes by the region without CCEs, the preexisting CCE area plays an important role in the increase of chlorophyll-a (chl-a) concentration in the CCEs impacted by the typhoons. The preexisting chl-a in CCE is about 25%~45% (8%~25%) of postexisting chl-a in CCE for higher (slower) transit speed typhoons. If the EAGPE of CCE increases greatly after typhoon passing by with slow transit speed, so does the chl-a in the CCE area. The EKE (EAGPE) changes of the preexisting CCE are in the order of O(1014~1015 J). EKE and EAGPE of CCE are dominantly enhanced by typhoon with slow transit speed (<3 m/s) and the posttyphoon EAGPE is always larger than posttyphoon EKE for 8 cases. The maximum EAGPE change of the preexisting CCE reaches5.11×1015 J, which was induced by typhoon Hagibis.


2012 ◽  
Vol 70 (1) ◽  
pp. 363-380 ◽  
Author(s):  
Guanqiang Cai ◽  
Li Miao ◽  
Hongjun Chen ◽  
Guihua Sun ◽  
Jiaoqi Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document