scholarly journals Improvement of Workflow for Topographic Surveys in Long Highwalls of Open Pit Mines with an Unmanned Aerial Vehicle and Structure from Motion

2021 ◽  
Vol 13 (17) ◽  
pp. 3353
Author(s):  
Ignacio Zapico ◽  
Jonathan B. Laronne ◽  
Lázaro Sánchez Castillo ◽  
José F. Martín Duque

Conducting topographic surveys in active mines is challenging due ongoing operations and hazards, particularly in highwalls subject to constant and active mass movements (rock and earth falls, slides and flows). These vertical and long surfaces are the core of most mines, as the mineral feeding mining production originates there. They often lack easy and safe access paths. This framework highlights the importance of accomplishing non-contact high-accuracy and detailed topographies to detect instabilities prior to their occurrence. We have conducted drone flights in search of the best settings in terms of altitude mode and camera angle, to produce digital representation of topographies using Structure from Motion. Identification of discontinuities was evaluated, as they are a reliable indicator of potential failure areas. Natural shapes were used as control/check points and were surveyed using a robotic total station with a coaxial camera. The study was conducted in an active kaolin mine near the Alto Tajo Natural Park of East-Central Spain. Here the 140 m highwall is formed by layers of limestone, marls and sands. We demonstrate that for this vertical landscape, a facade drone flight mode combined with a nadir camera angle, and automatically programmed with a computer-based mission planning software, provides the most accurate and detailed topographies, in the shortest time and with increased flight safety. Contrary to previous reports, adding oblique images does not improve accuracy for this configuration. Moreover, neither extra sets of images nor an expert pilot are required. These topographies allowed the detection of 93.5% more discontinuities than the Above Mean Sea Level surveys, the common approach used in mining areas. Our findings improve the present SfM-UAV survey workflows in long highwalls. The versatile topographies are useful for the management and stabilization of highwalls during phases of operation, as well closure-reclamation.

2020 ◽  
Vol 1 (2) ◽  
Author(s):  
Le VAN CANH ◽  
Cao XUAN CUONG ◽  
Nguyen QUOC LONG ◽  
Le THI THU HA ◽  
Tran TRUNG ANH ◽  
...  

Open-pit coal mines’ terrain is often complex and quickly and frequently changes. Therefore, topographic surveys of open-pit mines are undertaken on a daily basis. While these tasks are very time-consuming and costly with traditional methods such as total station and GNSS, the unmanned aerial vehicle (UAV) based method can be more efficient. This method is a combination of the “Structure from motion” (SfM) photogrammetry technique and UAV photogrammetry which has been widely used in topographic surveying. With an increasing popularity of RTK-enabled drones, it is becoming even more powerful method. While the important role of ground control points (GCP) in the accuracy of digital surface model (DSM) generated from images acquired by “traditional” UAVs (not RTK-enabled drones) has been proved in many previous studies, it is not clear in the case of RTK-enabled drones, especially for complex terrain in open-pit coal mines. In this study, we experimentally investigated the influence of GCP regarding its numbers and distribution on the accuracy of DSM generation from images acquired by RTK-enabled drones in open-pit coal mines. In addition, the Post Processing Kinematic (PPK) mode was executed over a test field with the same flight altitude. DSM generation was performed with several block control configurations: PPK only, PPK with one GCP, and PPK with two GCPs. Several positions of GCPs were also examined to test the optimal locations for placing GCPs to achieve accurate DSMs. The results show that the horizontal and vertical accuracy given by PPK only were 9.3 and 84.4 cm, respectively. However, when adding at least one GCP, the accuracy was significantly improved in both horizontal and vertical components, with RMSE for XY and Z ranging between 3.8 and 9.8 cm (with one GCP) and between 3.0 and 5.7 cm (with two GCPs), respectively. Also, the GCPs placed in the deep areas of the open-pit mine could ensure the cm-level accuracy.


Author(s):  
Hongbo Xin ◽  
Yujie Wang ◽  
Xianzhong Gao ◽  
Qingyang Chen ◽  
Bingjie Zhu ◽  
...  

The tail-sitter unmanned aerial vehicles have the advantages of multi-rotors and fixed-wing aircrafts, such as vertical takeoff and landing, long endurance and high-speed cruise. These make the tail-sitter unmanned aerial vehicle capable for special tasks in complex environments. In this article, we present the modeling and the control system design for a quadrotor tail-sitter unmanned aerial vehicle whose main structure consists of a traditional quadrotor with four wings fixed on the four rotor arms. The key point of the control system is the transition process between hover flight mode and level flight mode. However, the normal Euler angle representation cannot tackle both of the hover and level flight modes because of the singularity when pitch angle tends to [Formula: see text]. The dual-Euler method using two Euler-angle representations in two body-fixed coordinate frames is presented to couple with this problem, which gives continuous attitude representation throughout the whole flight envelope. The control system is divided into hover and level controllers to adapt to the two different flight modes. The nonlinear dynamic inverse method is employed to realize fuselage rotation and attitude stabilization. In guidance control, the vector field method is used in level flight guidance logic, and the quadrotor guidance method is used in hover flight mode. The framework of the whole system is established by MATLAB and Simulink, and the effectiveness of the guidance and control algorithms are verified by simulation. Finally, the flight test of the prototype shows the feasibility of the whole system.


Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 4
Author(s):  
Sha Gao ◽  
Shu Gan ◽  
Xiping Yuan ◽  
Rui Bi ◽  
Raobo Li ◽  
...  

Low-altitude unmanned aerial vehicle (UAV) photogrammetry combined with structure-from-motion (SFM) algorithms is the latest technological approach to imaging 3D stereo constructions. At present, derivative products have been widely used in landslide monitoring, landscape evolution, glacier movement, volume measurement, and landscape change detection. However, there is still a lack of research into the accuracy of 3D data positioning based on the structure-from-motion of unmanned aerial vehicle (UAV-SFM) technology, itself, which can affect the measurable effectiveness of the results in further applications of this technological approach. In this paper, validation work was carried out for the DJI Phantom 4 RTK UAV, for earth observation data related to 3D positioning accuracy. First, a test plot with a relatively stable surface was selected for repeated flight imaging observations. Specifically, three repeated flights were performed on the test plot to obtain three sorties of images; the structure from motion and multi-view stereo (SFM-MVS) key technology was used to process and construct a 3D scene model, and based on this model the digital surface model (DSM) and digital orthophoto map (DOM) data of the same plot with repeated observations were obtained. In order to check the level of 3D measurement accuracy of the UAV technology itself, a window selection-based method was used to sample the point cloud set data from the three-sortie repeat observation 3D model. The DSM and DOM data obtained from three repeated flights over the surface invariant test plots were used to calculate the repeat observation 3D point errors, taking into account the general methodology of redundant observation error analysis for topographic surveys. At the same time, to further analyze the limits of the UAV measurement technique, possible under equivalent observation conditions with the same processing environment, a difference model (DOD) was constructed for the DSM data from three sorties, to deepen the overall characterization of the differences between the DSMs obtained from repeated observations. The results of the experimental study concluded that both the analysis of the 3D point set measurements based on window sampling and the accuracy evaluation using the difference model were generally able to achieve a centimeter level of planimetric accuracy and vertical accuracy. In addition, the accuracy of the surface-stabilized hardened ground was better, overall, than the accuracy of the non-hardened ground. The results of this paper not only probe the measurement limits of this type of UAV, but also provide a quantitative reference for the accurate control and setting of an acquisition scheme of the UAV-based SfM-MVS method for geomorphological data acquisition and 3D reconstruction.


Author(s):  
Hao Yue ◽  
David Bassir ◽  
Hicham Medromi ◽  
Hua Ding ◽  
Khaoula Abouzaid

In order to overcome the propre disadvantages of FW(Fixed-Wing) and VTOL(Vertical-Taking-Off-and-Landing) UAV (Unmanned Aerial Vehicle) and extend its application, the hybrid drone is invested more in recent years by researchers and several classifications are developed on the part of dual system. In this article, an innovative hybrid UAV is raised and studied by introducing the canard configuration that is coupled with conventional delta wing as well as winglet structure. Profited by Computational Fluid Dynamics (CFD) and Response Surface Method (RSM), a multilevel optimization approach is practically presented and concerned in terms of cruise flight mode: adopted by an experienced-based distribution strategy, the total lift object is respectively assigned into the delta wing (90–95%) and canard wing(5–10%) which is applied into a two-step optimization: the first optimization problem is solved only with the parameters concerned with delta wing afterwards the second optimization is successively concluded to develop the canard configuration considering the optimized delta wing conception. Above all, the optimal conceptual design of the delta and canard wing is realized by achieving the lift goal with less drag performance in cruise mode.


2020 ◽  
Vol 95 (sp1) ◽  
pp. 1162
Author(s):  
Deivid Cristian Leal-Alves ◽  
Jair Weschenfelder ◽  
Julia Carballo Dominguez Almeida ◽  
Miguel da Guia Albuquerque ◽  
Jean Marcel de Almeida Espinoza ◽  
...  

Author(s):  
Konstantin Dergachov ◽  
Anatolii Kulik

A case study drone that constitutes a shock-resistant aerial vehicle is discussed in the chapter. The aerial motor platform is placed in gimbal joints of the exclusive framework (shell). The platform is a helicopter type aerial vehicle powered with two coaxial rotors of contra rotation. Mathematical model of the platform spatial dynamics bases Lagrange's equations to bring reliable solutions so that advanced model-based control law design techniques can be used. Though the case study implies utilizing an automatic flight mode of the aerial vehicle, it can be piloted remotely on radio. The on-board video cameras and other sensors are used to bring about both navigational duties and surveillance missions such as building constructions monitoring.


Geosciences ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 28 ◽  
Author(s):  
Cosimo Cagnazzo ◽  
Ettore Potente ◽  
Sabino Rosato ◽  
Giuseppe Mastronuzzi

The coastal system, with its physical chemical and biological components, is the place where the lithosphere, atmosphere and hydrosphere intersect and interact, and in which human activity has a considerable impact on the balance of the whole ecosystem. The aim of this study is to assess the health of the coastal environment in a natural protected area in Policoro (Italy). Sand samples have been collected and analysed to detect the presence of environmental contaminants and pollutants (heavy metals). A photogrammetric survey was carried out using an unmanned aerial vehicle (UAV), and an updated orthophoto of the area was obtained using the Structure from Motion (SfM) processing technique. Geostatistical techniques have been used to assess the distribution of the contaminants in the study area.


2020 ◽  
Vol 12 (22) ◽  
pp. 3759
Author(s):  
Baodong Ma ◽  
Xuexin Li ◽  
Ziwei Jiang ◽  
Ruiliang Pu ◽  
Aiman Liang ◽  
...  

Dust pollution is severe in some mining areas in China due to rapid industrial development. Dust deposited on the vegetation canopy may change its spectra. However, a relationship between canopy spectra and dust amount has not been quantitatively studied, and a pixel-scale condition for remote sensing application has not been considered yet. In this study, the dust dispersion characteristics in an iron mining area were investigated using the American Meteorological Society (AMS) and the U.S. Environmental Protection Agency (EPA) regulatory model (AERMOD). Further, based on the three-dimensional discrete anisotropic radiative transfer (DART) model, the spectral characteristics of vegetation canopy under the dusty condition were simulated, and the influence of dustfall on vegetation canopy spectra was studied. Finally, the dust effect on vegetation spectra at the canopy scale was extended to a pixel scale, and the response of dust effect on vegetation spectra at the pixel scale was determined under different fractional vegetation covers (FVCs). The experimental results show that the dust pollution along a haul road was more severe and extensive than that in a stope. Taking dust dispersion along the road as an example, the variation of vegetation canopy spectra increased with the height of dust deposited on the vegetation canopy. At the pixel scale, a lower vegetation FVC would weaken the influence of dust on the spectra. The results derived from simulation spectral data were tested using satellite remote sensing images. The tested result indicates that the influence of dust retention on the pixel spectra with different FVCs was consistent with that created with the simulated data. The finding could be beneficial for those making decisions on monitoring vegetation under dusty conditions and reducing dust pollution in mining areas using remote sensing technology.


Sign in / Sign up

Export Citation Format

Share Document