scholarly journals Retrieval of Outgoing Longwave Radiation from the Fengyun-3D Satellite and Its Climate Applications

2021 ◽  
Vol 13 (18) ◽  
pp. 3700
Author(s):  
Yanjiao Wang ◽  
Feng Yan

The Fengyun-3D (FY-3D) satellite is a Chinese Earth observation satellite with high spectral resolution that can provide multi-spectral observations under all weather conditions. Outgoing longwave radiation (OLR) is an important parameter in the earth radiation energy balance and can reflect changes in atmospheric circulation and convective activity in response to incoming solar radiation. To apply the OLR data of the FY-3D satellite (F_OLR) to weather and climate analyses, the traditional single-channel OLR inversion algorithm for the NOAA (National Oceanic and Atmospheric Administration) satellite was used to calculate F_OLR, and the difference between F_OLR and the OLR data of the NOAA 18 satellite (N_OLR) was analyzed. A correction algorithm was proposed to correct F_OLR to match N_OLR; the spatiotemporal consistency of the corrected F_OLR and N_OLR was evaluated, and the two types of OLR data were used to analyze the onset of the South China Sea Summer Monsoon (SCSSM) and typhoon precipitation in China. The results showed that the corrected F_OLR and N_OLR were consistent in both temporal variation and spatial distribution and that the monitoring of the SCSSM and typhoon precipitation by the two types of OLR data was also in agreement, showing their equivalent quality. Finally, the N_OLR (2006–2019) and the corrected F_OLR (2020-present) were combined to form a long time series OLR dataset that was used in the Beijing Climate Center climate monitoring system in China to monitor abnormal changes in the global convective activity. This study can provide a reference method for future weather and climate applications of Chinese satellites.

MAUSAM ◽  
2021 ◽  
Vol 48 (1) ◽  
pp. 55-64
Author(s):  
D.S. PAI

ABSTRACT. Using the monthly outgoing longwave radiation (OLR) data obtained from NOAA polar orbiting satellites, during the period 1979-92, composite OLR anomalies in respect of good monsoon years (1983 and 1988), bad monsoon years (1982 and 1987 for the case associated with ENSO and 1979 and 1986 separately for the case without ENSO) and normal monsoon years (1980, 1981, 1984, 1985, 1989, 1990, 1991 & 1992) were examined. The computation has been performed over the global tropics (30°N-30°S) bounded between the longitudes 50°E and 130°W (through date line) on 5° longitude × 5° latitude grid. There are significant differences in the spatial distributions of composite OLR anomalies between these four cases from the month of April to September indicating spatial and temporal changes in the organized convective pattern. For the good monsoon years persistent negative anomalies indicating enhanced convective activity were observed over the Indonesian regions, whereas large positive anomalies indicating depressed convective activity were observed over equatorial Pacific just west of date line. During the bad monsoon years above normal convection was observed over Pacific region (ENSO case) and over equatorial Indian Ocean (Non ENSO case). During normal monsoon years the spatial patterns of OLR anomalies were similar to that of good monsoon years, but with weaker anomalies. These observations can be explained through the relative interaction between tropical convergence zone (TCZ) over the Indian sub-continent and that over the north Indian Ocean and Pacific. The eastward shift of the convective activity during El-Nino years can be attributed to shift/reversal of Walker circulation. There are strong signals of OLR anomalies during pre-monsoon months which may be useful in inferring the nature of the subsequent monsoon activity.  


2021 ◽  
Vol 13 (11) ◽  
pp. 2201
Author(s):  
Hanlin Ye ◽  
Huadong Guo ◽  
Guang Liu ◽  
Jinsong Ping ◽  
Lu Zhang ◽  
...  

Moon-based Earth observations have attracted significant attention across many large-scale phenomena. As the only natural satellite of the Earth, and having a stable lunar surface as well as a particular orbit, Moon-based Earth observations allow the Earth to be viewed as a single point. Furthermore, in contrast with artificial satellites, the varied inclination of Moon-based observations can improve angular samplings of specific locations on Earth. However, the potential for estimating the global outgoing longwave radiation (OLR) from the Earth with such a platform has not yet been fully explored. To evaluate the possibility of calculating OLR using specific Earth observation geometry, we constructed a model to estimate Moon-based OLR measurements and investigated the potential of a Moon-based platform to acquire the necessary data to estimate global mean OLR. The primary method of our study is the discretization of the observational scope into various elements and the consequent integration of the OLR of all elements. Our results indicate that a Moon-based platform is suitable for global sampling related to the calculation of global mean OLR. By separating the geometric and anisotropic factors from the measurement calculations, we ensured that measured values include the effects of the Moon-based Earth observation geometry and the anisotropy of the scenes in the observational scope. Although our results indicate that higher measured values can be achieved if the platform is located near the center of the lunar disk, a maximum difference between locations of approximately 9 × 10−4 W m−2 indicates that the effect of location is too small to remarkably improve observation performance of the platform. In conclusion, our analysis demonstrates that a Moon-based platform has the potential to provide continuous, adequate, and long-term data for estimating global mean OLR.


Sign in / Sign up

Export Citation Format

Share Document