scholarly journals Crop Rotation Modeling for Deep Learning-Based Parcel Classification from Satellite Time Series

2021 ◽  
Vol 13 (22) ◽  
pp. 4599
Author(s):  
Félix Quinton ◽  
Loic Landrieu

While annual crop rotations play a crucial role for agricultural optimization, they have been largely ignored for automated crop type mapping. In this paper, we take advantage of the increasing quantity of annotated satellite data to propose to model simultaneously the inter- and intra-annual agricultural dynamics of yearly parcel classification with a deep learning approach. Along with simple training adjustments, our model provides an improvement of over 6.3% mIoU over the current state-of-the-art of crop classification, and a reduction of over 21% of the error rate. Furthermore, we release the first large-scale multi-year agricultural dataset with over 300,000 annotated parcels.

2021 ◽  
Vol 13 (22) ◽  
pp. 4668
Author(s):  
Stella Ofori-Ampofo ◽  
Charlotte Pelletier ◽  
Stefan Lang

Crop maps are key inputs for crop inventory production and yield estimation and can inform the implementation of effective farm management practices. Producing these maps at detailed scales requires exhaustive field surveys that can be laborious, time-consuming, and expensive to replicate. With a growing archive of remote sensing data, there are enormous opportunities to exploit dense satellite image time series (SITS), temporal sequences of images over the same area. Generally, crop type mapping relies on single-sensor inputs and is solved with the help of traditional learning algorithms such as random forests or support vector machines. Nowadays, deep learning techniques have brought significant improvements by leveraging information in both spatial and temporal dimensions, which are relevant in crop studies. The concurrent availability of Sentinel-1 (synthetic aperture radar) and Sentinel-2 (optical) data offers a great opportunity to utilize them jointly; however, optimizing their synergy has been understudied with deep learning techniques. In this work, we analyze and compare three fusion strategies (input, layer, and decision levels) to identify the best strategy that optimizes optical-radar classification performance. They are applied to a recent architecture, notably, the pixel-set encoder–temporal attention encoder (PSE-TAE) developed specifically for object-based classification of SITS and based on self-attention mechanisms. Experiments are carried out in Brittany, in the northwest of France, with Sentinel-1 and Sentinel-2 time series. Input and layer-level fusion competitively achieved the best overall F-score surpassing decision-level fusion by 2%. On a per-class basis, decision-level fusion increased the accuracy of dominant classes, whereas layer-level fusion improves up to 13% for minority classes. Against single-sensor baseline, multi-sensor fusion strategies identified crop types more accurately: for example, input-level outperformed Sentinel-2 and Sentinel-1 by 3% and 9% in F-score, respectively. We have also conducted experiments that showed the importance of fusion for early time series classification and under high cloud cover condition.


Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3137
Author(s):  
Kevin Fauvel ◽  
Tao Lin ◽  
Véronique Masson ◽  
Élisa Fromont ◽  
Alexandre Termier

Multivariate Time Series (MTS) classification has gained importance over the past decade with the increase in the number of temporal datasets in multiple domains. The current state-of-the-art MTS classifier is a heavyweight deep learning approach, which outperforms the second-best MTS classifier only on large datasets. Moreover, this deep learning approach cannot provide faithful explanations as it relies on post hoc model-agnostic explainability methods, which could prevent its use in numerous applications. In this paper, we present XCM, an eXplainable Convolutional neural network for MTS classification. XCM is a new compact convolutional neural network which extracts information relative to the observed variables and time directly from the input data. Thus, XCM architecture enables a good generalization ability on both large and small datasets, while allowing the full exploitation of a faithful post hoc model-specific explainability method (Gradient-weighted Class Activation Mapping) by precisely identifying the observed variables and timestamps of the input data that are important for predictions. We first show that XCM outperforms the state-of-the-art MTS classifiers on both the large and small public UEA datasets. Then, we illustrate how XCM reconciles performance and explainability on a synthetic dataset and show that XCM enables a more precise identification of the regions of the input data that are important for predictions compared to the current deep learning MTS classifier also providing faithful explainability. Finally, we present how XCM can outperform the current most accurate state-of-the-art algorithm on a real-world application while enhancing explainability by providing faithful and more informative explanations.


2021 ◽  
Vol 13 (14) ◽  
pp. 2790
Author(s):  
Hongwei Zhao ◽  
Sibo Duan ◽  
Jia Liu ◽  
Liang Sun ◽  
Louis Reymondin

Accurate crop type maps play an important role in food security due to their widespread applicability. Optical time series data (TSD) have proven to be significant for crop type mapping. However, filling in missing information due to clouds in optical imagery is always needed, which will increase the workload and the risk of error transmission, especially for imagery with high spatial resolution. The development of optical imagery with high temporal and spatial resolution and the emergence of deep learning algorithms provide solutions to this problem. Although the one-dimensional convolutional neural network (1D CNN), long short-term memory (LSTM), and gate recurrent unit (GRU) models have been used to classify crop types in previous studies, their ability to identify crop types using optical TSD with missing information needs to be further explored due to their different mechanisms for handling invalid values in TSD. In this research, we designed two groups of experiments to explore the performances and characteristics of the 1D CNN, LSTM, GRU, LSTM-CNN, and GRU-CNN models for crop type mapping using unfilled Sentinel-2 (Sentinel-2) TSD and to discover the differences between unfilled and filled Sentinel-2 TSD based on the same algorithm. A case study was conducted in Hengshui City, China, of which 70.3% is farmland. The results showed that the 1D CNN, LSTM-CNN, and GRU-CNN models achieved acceptable classification accuracies (above 85%) using unfilled TSD, even though the total missing rate of the sample values was 43.5%; these accuracies were higher and more stable than those obtained using filled TSD. Furthermore, the models recalled more samples on crop types with small parcels when using unfilled TSD. Although LSTM and GRU models did not attain accuracies as high as the other three models using unfilled TSD, their results were almost close to those with filled TSD. This research showed that crop types could be identified by deep learning features in Sentinel-2 dense time series images with missing information due to clouds or cloud shadows randomly, which avoided spending a lot of time on missing information reconstruction.


2021 ◽  
Vol 7 ◽  
pp. e767
Author(s):  
Arockia Praveen ◽  
Abdulfattah Noorwali ◽  
Duraimurugan Samiayya ◽  
Mohammad Zubair Khan ◽  
Durai Raj Vincent P M ◽  
...  

Image memorability is a very hard problem in image processing due to its subjective nature. But due to the introduction of Deep Learning and the large availability of data and GPUs, great strides have been made in predicting the memorability of an image. In this paper, we propose a novel deep learning architecture called ResMem-Net that is a hybrid of LSTM and CNN that uses information from the hidden layers of the CNN to compute the memorability score of an image. The intermediate layers are important for predicting the output because they contain information about the intrinsic properties of the image. The proposed architecture automatically learns visual emotions and saliency, shown by the heatmaps generated using the GradRAM technique. We have also used the heatmaps and results to analyze and answer one of the most important questions in image memorability: “What makes an image memorable?”. The model is trained and evaluated using the publicly available Large-scale Image Memorability dataset (LaMem) from MIT. The results show that the model achieves a rank correlation of 0.679 and a mean squared error of 0.011, which is better than the current state-of-the-art models and is close to human consistency (p = 0.68). The proposed architecture also has a significantly low number of parameters compared to the state-of-the-art architecture, making it memory efficient and suitable for production.


2020 ◽  
Author(s):  
Pathikkumar Patel ◽  
Bhargav Lad ◽  
Jinan Fiaidhi

During the last few years, RNN models have been extensively used and they have proven to be better for sequence and text data. RNNs have achieved state-of-the-art performance levels in several applications such as text classification, sequence to sequence modelling and time series forecasting. In this article we will review different Machine Learning and Deep Learning based approaches for text data and look at the results obtained from these methods. This work also explores the use of transfer learning in NLP and how it affects the performance of models on a specific application of sentiment analysis.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1962
Author(s):  
Enrico Buratto ◽  
Adriano Simonetto ◽  
Gianluca Agresti ◽  
Henrik Schäfer ◽  
Pietro Zanuttigh

In this work, we propose a novel approach for correcting multi-path interference (MPI) in Time-of-Flight (ToF) cameras by estimating the direct and global components of the incoming light. MPI is an error source linked to the multiple reflections of light inside a scene; each sensor pixel receives information coming from different light paths which generally leads to an overestimation of the depth. We introduce a novel deep learning approach, which estimates the structure of the time-dependent scene impulse response and from it recovers a depth image with a reduced amount of MPI. The model consists of two main blocks: a predictive model that learns a compact encoded representation of the backscattering vector from the noisy input data and a fixed backscattering model which translates the encoded representation into the high dimensional light response. Experimental results on real data show the effectiveness of the proposed approach, which reaches state-of-the-art performances.


Author(s):  
Yuheng Hu ◽  
Yili Hong

Residents often rely on newspapers and television to gather hyperlocal news for community awareness and engagement. More recently, social media have emerged as an increasingly important source of hyperlocal news. Thus far, the literature on using social media to create desirable societal benefits, such as civic awareness and engagement, is still in its infancy. One key challenge in this research stream is to timely and accurately distill information from noisy social media data streams to community members. In this work, we develop SHEDR (social media–based hyperlocal event detection and recommendation), an end-to-end neural event detection and recommendation framework with a particular use case for Twitter to facilitate residents’ information seeking of hyperlocal events. The key model innovation in SHEDR lies in the design of the hyperlocal event detector and the event recommender. First, we harness the power of two popular deep neural network models, the convolutional neural network (CNN) and long short-term memory (LSTM), in a novel joint CNN-LSTM model to characterize spatiotemporal dependencies for capturing unusualness in a region of interest, which is classified as a hyperlocal event. Next, we develop a neural pairwise ranking algorithm for recommending detected hyperlocal events to residents based on their interests. To alleviate the sparsity issue and improve personalization, our algorithm incorporates several types of contextual information covering topic, social, and geographical proximities. We perform comprehensive evaluations based on two large-scale data sets comprising geotagged tweets covering Seattle and Chicago. We demonstrate the effectiveness of our framework in comparison with several state-of-the-art approaches. We show that our hyperlocal event detection and recommendation models consistently and significantly outperform other approaches in terms of precision, recall, and F-1 scores. Summary of Contribution: In this paper, we focus on a novel and important, yet largely underexplored application of computing—how to improve civic engagement in local neighborhoods via local news sharing and consumption based on social media feeds. To address this question, we propose two new computational and data-driven methods: (1) a deep learning–based hyperlocal event detection algorithm that scans spatially and temporally to detect hyperlocal events from geotagged Twitter feeds; and (2) A personalized deep learning–based hyperlocal event recommender system that systematically integrates several contextual cues such as topical, geographical, and social proximity to recommend the detected hyperlocal events to potential users. We conduct a series of experiments to examine our proposed models. The outcomes demonstrate that our algorithms are significantly better than the state-of-the-art models and can provide users with more relevant information about the local neighborhoods that they live in, which in turn may boost their community engagement.


2020 ◽  
Vol 36 (10) ◽  
pp. 3011-3017 ◽  
Author(s):  
Olga Mineeva ◽  
Mateo Rojas-Carulla ◽  
Ruth E Ley ◽  
Bernhard Schölkopf ◽  
Nicholas D Youngblut

Abstract Motivation Methodological advances in metagenome assembly are rapidly increasing in the number of published metagenome assemblies. However, identifying misassemblies is challenging due to a lack of closely related reference genomes that can act as pseudo ground truth. Existing reference-free methods are no longer maintained, can make strong assumptions that may not hold across a diversity of research projects, and have not been validated on large-scale metagenome assemblies. Results We present DeepMAsED, a deep learning approach for identifying misassembled contigs without the need for reference genomes. Moreover, we provide an in silico pipeline for generating large-scale, realistic metagenome assemblies for comprehensive model training and testing. DeepMAsED accuracy substantially exceeds the state-of-the-art when applied to large and complex metagenome assemblies. Our model estimates a 1% contig misassembly rate in two recent large-scale metagenome assembly publications. Conclusions DeepMAsED accurately identifies misassemblies in metagenome-assembled contigs from a broad diversity of bacteria and archaea without the need for reference genomes or strong modeling assumptions. Running DeepMAsED is straight-forward, as well as is model re-training with our dataset generation pipeline. Therefore, DeepMAsED is a flexible misassembly classifier that can be applied to a wide range of metagenome assembly projects. Availability and implementation DeepMAsED is available from GitHub at https://github.com/leylabmpi/DeepMAsED. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document