scholarly journals Mapping Land Use Land Cover Changes and Their Determinants in the Context of a Massive Free Labour Mobilisation Campaign: Evidence from South Wollo, Ethiopia

2021 ◽  
Vol 13 (24) ◽  
pp. 5078
Author(s):  
Bichaye Tesfaye ◽  
Monica Lengoiboni ◽  
Jaap Zevenbergen ◽  
Belay Simane

Northern Ethiopia is characterised by fragile mountain eco-systems that are highly susceptible to land degradation, impacting food security and livelihoods. This study appraises Land Use Land Cover Changes (LULCC) and their determinants from 2000 to 2020 in Dessie Zuria and Kutaber Woredas. It explores the LULCC and the key anthropogenic drivers of the change over the past 20 years through a mix of satellite imagery and a survey of local understandings. Six land use types (agriculture, forest, area closure, grazing, settlement and bare land) were mapped from satellite imagery that was acquired from Landsat 7 for the years 2000, 2005, and 2010, and Landsat 8 and OLI multispectral imageries for the years 2015 and 2020 with a spectral resolution of 30-m obtained from USGS. The results showed that agricultural land increased from 29.68% in 2000 to 35.77% in 2020.Furthermore, settlement and grazing lands enlarged from 5.95% and 6.04%, respectively, to 8.31% and 6.35% during the same period, while bare land increased from 9.89% to 10.92% in 2020. On the contrary, forest and area closure decreased from 18.45% and 29.99% to 17.8% and 17.38%, respectively. Meanwhile, population growth, unrestricted grazing, losing a sense of ownership of protected area closures and forests, lack of cooperation, using the free labour mobilisation schemes for government-induced agendas, weak enforcement of laws and bylaws, and engaging farmers for extended days on the campaign were prominent determinants of the changes. This research has implications for development actors across land management and food security towards implementing sustainable land management in the area and beyond.

Author(s):  
Ajagbe, Abeeb Babajide ◽  
Oguntade, Sodiq Solagbade ◽  
Abiade, Idunnu Temitope

Land use assessment and land cover transition need remote sensing (RS) and geographic information systems (GIS). Land use/land cover changes of Ado-Ekiti Local Government Area, Ekiti State, Nigeria, were examined in this research. Landsat 5 TM, Landsat 7 ETM+ and Landsat 8 OLI were acquired for 1985, 2000, and 2015 respectively. Image scene with path 190 and row 055 was used for the three Landsat Images. A supervised digital image classification approach was used in the study, which was carried out using the ArcMap 10.4 Software. Five land use/land cover categories were recognised and recorded as polygons, including Built-up Areas, Bare surface, water body, Dense Vegetation and Sparse Vegetation. The variations in the area covered by the various polygons were measured in hectares. This study revealed that between 1985 and 2015, there was a significant change in Built-up areas from 1694 hectares to 5656 hectares. However, there was a reduction in water body from 25 hectares in 1985 to 19 hectares in 2015; there was a severe reduction in the bare surface from 4641 hectares in 1985 to 2237 hectares in 2015. Generally, the findings show that the number of people building houses in the study area has grown over time, as many people reside in the outskirts of the Local Government Area, resulting in a decrease in the vegetation and bare surfaces. The maps created in this research will be useful to the Ekiti State Ministry of Land, Housing, Physical Planning, and Urban Development to develop strategies and government policies to benefit people living in the Ado-Ekiti Local Government Area of the State.


2017 ◽  
Vol 38 (14) ◽  
pp. 4107-4129 ◽  
Author(s):  
Ayele Almaw Fenta ◽  
Hiroshi Yasuda ◽  
Nigussie Haregeweyn ◽  
Ashebir Sewale Belay ◽  
Zelalem Hadush ◽  
...  

Author(s):  
M. A. Saharan ◽  
N. Vyas ◽  
S. L. Borana ◽  
S. K. Yadav

<p><strong>Abstract.</strong> Land Use – Land Cover (LULC) classification mapping is an important tool for management of natural resources of an area. The remote sensing technology in recent times has been used in monitoring the changing patterns of land use-land cover. The aim of the study is to monitor the LULC changes in Jodhpur city over the period 1990–2018. Satellite imagery of Landsat 8 OLI (June, 2018) &amp;amp; Landsat TM (Oct, 1990) were used for classification analysis. Supervised classification-maximum likelihood algorithm is used in ENVI software to detect land use land cover changes. Five LULC categories were used, namely- urban area, mining area, vegetation, water bodies and other area (Rock outcrops and barren land). The LULC classified maps of two different periods i.e. 2018 and 1990 were generated on 1<span class="thinspace"></span>:<span class="thinspace"></span>50,000 scale. The accuracy assessment method was used to measure the accuracy of classified maps. This study shall be of good assistance to the town planners of Jodhpur city for the purpose of the sustainable development as per the master plan 2031.</p>


Author(s):  
Gofamodimo Mashame ◽  
Felicia Akinyemi

Land degradation (LD) is among the major environmental and anthropogenic problems driven by land use-land cover (LULC) and climate change worldwide. For example, poor LULC practises such as deforestation, livestock overstocking, overgrazing and arable land use intensification on steep slopes disturbs the soil structure leaving the land susceptible to water erosion, a type of physical land degradation. Land degradation related problems exist in Sub-Saharan African countries such as Botswana which is semi-arid in nature. LULC and LD linkage information is still missing in many semi-arid regions worldwide.Mapping seasonal LULC is therefore very important in understanding LULC and LD linkages. This study assesses the impact of seasonal LULC variation on LD utilizing Remote Sensing (RS) techniques for Palapye region in Central District, Botswana. LULC classes for the dry and rainy seasons were classified using LANDSAT 8 images at Level I according to the Food and Agriculture Organization (FAO) International Organization of Standardization (ISO) code 19144. Level I consists of 10 LULC classes. The seasonal variations in LULC are further related to LD susceptibility in the semi-arid context. The results suggest that about 985 km² (22%) of the study area is susceptible to LD by water, major LULC types affected include: cropland, paved/rocky material, bare land, built-up area, mining area, and water body. Land degradation by water susceptibility due to seasonal land use-land cover variations is highest in the east of the study area where there is high cropland to bare land conversion.


2021 ◽  
Vol 9 (1) ◽  
pp. 3045-3053
Author(s):  
Kambo Dero ◽  
Wakshum Shiferaw ◽  
Biruk Zewde

The study was aimed to assess urban induced land use land cover changes in the upper Deme watershed. Three satellite images of 1986, 2002, and 2019 were analyzed by ArcGIS and processed by supervised classification. Land use land cover change in the watershed increased for settlement, bare land, and croplands in the period 1986-2019 by 56.6%, 53%, and 0.25%, respectively. However, the land use land cover change in the watershed decreased for a water body, forest, and grassland by 65%, 57.7%, and 7%, respectively. These enforced to change the work habit and social bases. Out of converted lands, during 1986-2002, 34.9%, 53%, 18%, 40.9%, and 10.6% of bare land, cropland, forest land, grassland, and water bodies, respectively, in the upper Deme watershed were changed into settlement areas. During 2002-2019, 30.7%, 36.8%, 26.9%, 66%, and 33.3% of bare land, cropland, forest land, grassland, and water bodies, respectively, were changed into settlement areas. This shows urbanization results in a different change in economic, social, land use land cover, and watershed management activities in the upper Deme watershed.


2019 ◽  
Vol 13 ◽  
pp. 61-68 ◽  
Author(s):  
Emiru Birhane ◽  
Haregeweini Ashfare ◽  
Ayele Almaw Fenta ◽  
Hadgu Hishe ◽  
Mewcha Amha Gebremedhin ◽  
...  

Author(s):  
Gofamodimo Mashame ◽  
Felicia Akinyemi

Land degradation (LD) is among the major environmental and anthropogenic problems driven by land use-land cover (LULC) and climate change worldwide. For example, poor LULC practises such as deforestation, livestock overstocking, overgrazing and arable land use intensification on steep slopes disturbs the soil structure leaving the land susceptible to water erosion, a type of physical land degradation. Land degradation related problems exist in Sub-Saharan African countries such as Botswana which is semi-arid in nature. LULC and LD linkage information is still missing in many semi-arid regions worldwide.Mapping seasonal LULC is therefore very important in understanding LULC and LD linkages. This study assesses the impact of seasonal LULC variation on LD utilizing Remote Sensing (RS) techniques for Palapye region in Central District, Botswana. LULC classes for the dry and rainy seasons were classified using LANDSAT 8 images at Level I according to the Food and Agriculture Organization (FAO) International Organization of Standardization (ISO) code 19144. Level I consists of 10 LULC classes. The seasonal variations in LULC are further related to LD susceptibility in the semi-arid context. The results suggest that about 985 km² (22%) of the study area is susceptible to LD by water, major LULC types affected include: cropland, paved/rocky material, bare land, built-up area, mining area, and water body. Land degradation by water susceptibility due to seasonal land use-land cover variations is highest in the east of the study area where there is high cropland to bare land conversion.


Geosciences ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 312
Author(s):  
Barbara Wiatkowska ◽  
Janusz Słodczyk ◽  
Aleksandra Stokowska

Urban expansion is a dynamic and complex phenomenon, often involving adverse changes in land use and land cover (LULC). This paper uses satellite imagery from Landsat-5 TM, Landsat-8 OLI, Sentinel-2 MSI, and GIS technology to analyse LULC changes in 2000, 2005, 2010, 2015, and 2020. The research was carried out in Opole, the capital of the Opole Agglomeration (south-western Poland). Maps produced from supervised spectral classification of remote sensing data revealed that in 20 years, built-up areas have increased about 40%, mainly at the expense of agricultural land. Detection of changes in the spatial pattern of LULC showed that the highest average rate of increase in built-up areas occurred in the zone 3–6 km (11.7%) and above 6 km (10.4%) from the centre of Opole. The analysis of the increase of built-up land in relation to the decreasing population (SDG 11.3.1) has confirmed the ongoing process of demographic suburbanisation. The paper shows that satellite imagery and GIS can be a valuable tool for local authorities and planners to monitor the scale of urbanisation processes for the purpose of adapting space management procedures to the changing environment.


2021 ◽  
Vol 14 (14) ◽  
Author(s):  
Syed Atif Bokhari ◽  
Zafeer Saqib ◽  
Amjad Ali ◽  
Arif Mahmud ◽  
Nadia Akhtar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document