scholarly journals Feasibility of Ground-Based Sky-Camera HDR Imagery to Determine Solar Irradiance and Sky Radiance over Different Geometries and Sky Conditions

2021 ◽  
Vol 13 (24) ◽  
pp. 5157
Author(s):  
Pedro C. C. Valdelomar ◽  
José Luis Gómez-Amo ◽  
Caterina Peris-Ferrús ◽  
Francesco Scarlatti ◽  
María Pilar Utrillas

We propose a methodological approach to provide the accurate and calibrated measurements of sky radiance and broadband solar irradiance using the High Dynamic Range (HDR) images of a sky-camera. This approach is based on a detailed instrumental characterization of a SONA sky-camera in terms of image acquisition and processing, as well as geometric and radiometric calibrations. As a result, a 1 min time resolution database of geometrically and radiometrically calibrated HDR images has been created and has been available since February 2020, with daily updates. An extensive validation of our radiometric retrievals has been performed in all sky conditions. Our results show a very good agreement with the independent measurements of the AERONET almucantar for sky radiance and pyranometers for broadband retrievals. The SONA sky radiance shows a difference of an RMBD < 10% while the broadband diffuse radiation shows differences of 2% and 5% over a horizontal plane and arbitrarily oriented surfaces, respectively. These results support the developed methodology and allow us to glimpse the great potential of sky-cameras to carry out accurate measurements of sky radiance and solar radiation components. Thus, the remote sensing techniques described here will undoubtedly be of great help for solar and atmospheric research.

2021 ◽  
Vol 14 (3) ◽  
pp. 2201-2217
Author(s):  
Juan C. Antuña-Sánchez ◽  
Roberto Román ◽  
Victoria E. Cachorro ◽  
Carlos Toledano ◽  
César López ◽  
...  

Abstract. All-sky cameras are frequently used to detect cloud cover; however, this work explores the use of these instruments for the more complex purpose of extracting relative sky radiances. An all-sky camera (SONA202-NF model) with three colour filters narrower than usual for this kind of cameras is configured to capture raw images at seven exposure times. A detailed camera characterization of the black level, readout noise, hot pixels and linear response is carried out. A methodology is proposed to obtain a linear high dynamic range (HDR) image and its uncertainty, which represents the relative sky radiance (in arbitrary units) maps at three effective wavelengths. The relative sky radiances are extracted from these maps and normalized by dividing every radiance of one channel by the sum of all radiances at this channel. Then, the normalized radiances are compared with the sky radiance measured at different sky points by a sun and sky photometer belonging to the Aerosol Robotic Network (AERONET). The camera radiances correlate with photometer ones except for scattering angles below 10∘, which is probably due to some light reflections on the fisheye lens and camera dome. Camera and photometer wavelengths are not coincident; hence, camera radiances are also compared with sky radiances simulated by a radiative transfer model at the same camera effective wavelengths. This comparison reveals an uncertainty on the normalized camera radiances of about 3.3 %, 4.3 % and 5.3 % for 467, 536 and 605 nm, respectively, if specific quality criteria are applied.


2020 ◽  
Author(s):  
Juan C. Antuña-Sánchez ◽  
Roberto Román ◽  
Victoria E. Cachorro ◽  
Carlos Toledano ◽  
César López ◽  
...  

Abstract. All-sky cameras are frequently used to detect cloud cover; however, this work explores the use of these instruments for the more complex purpose of extracting relative sky radiances. An all-sky camera (SONA202-NF model) with three colour filters, narrower than usual for this kind of cameras, is configured to capture raw images at seven exposure times. A detailed camera characterization of the black level, readout noise, hot pixels and linear response is carried out. A methodology is proposed to obtain a linear high dynamic range (HDR) image and its uncertainty, which represents the relative sky radiance map at three effective wavelengths. The relative sky radiance (normalized by the sum of all radiances) is extracted from these maps and compared with the sky radiance measured at different sky points by a sun/sky photometer belonging to the Aerosol Robotic Network (AERONET). The camera radiances are in line with photometer ones excepting for scattering angles below 10º, which is probably due to some light reflections on the fisheye lens and camera dome. Camera and photometer wavelengths are not coincident, hence camera radiances are also compared with sky radiances simulated by a radiative transfer model at the same camera effective wavelengths. This comparison reveals an uncertainty on the normalized camera radiances about 3.3 %, 4.3 % and 5.3 % for 467, 536 and 605 nm, respectively, if specific quality criteria are applied.


2016 ◽  
Vol 9 (2) ◽  
pp. 455-467 ◽  
Author(s):  
D. Toledo ◽  
P. Rannou ◽  
J.-P. Pommereau ◽  
A. Sarkissian ◽  
T. Foujols

Abstract. A small and sophisticated optical depth sensor (ODS) has been designed to work in the atmosphere of Mars. The instrument measures alternatively the diffuse radiation from the sky and the attenuated direct radiation from the Sun on the surface. The principal goals of ODS are to retrieve the daily mean aerosol optical depth (AOD) and to detect very high and optically thin clouds, crucial parameters in understanding the Martian meteorology and climatology. The detection of clouds is undertaken at twilight, allowing the detection and characterization of clouds with opacities below 0.03 (sub-visual clouds). In addition, ODS is capable to retrieve the aerosol optical depth during nighttime from moonlight measurements. Recently, ODS has been selected at the METEO meteorological station on board the ExoMars 2018 Lander. In order to study the performance of ODS under Mars-like conditions as well as to evaluate the retrieval algorithms for terrestrial measurements, ODS was deployed in Ouagadougou (Africa) between November 2004 and October 2005, a Sahelian region characterized by its high dust aerosol load and the frequent occurrence of Saharan dust storms. The daily average AOD values retrieved by ODS were compared with those provided by a CIMEL sunphotometer of the AERONET (Aerosol Robotic NETwork) network localized at the same location. Results represent a good agreement between both ground-based instruments, with a correlation coefficient of 0.77 for the whole data set and 0.94 considering only the cloud-free days. From the whole data set, a total of 71 sub-visual cirrus (SVC) were detected at twilight with opacities as thin as 1.10−3 and with a maximum of occurrence at altitudes between 14 and 20 km. Although further optimizations and comparisons of ODS terrestrial measurements are required, results indicate the potential of these measurements to retrieve the AOD and detect sub-visual clouds.


1995 ◽  
Vol 20 (18) ◽  
pp. 1889 ◽  
Author(s):  
A. Braun ◽  
D. Kopf ◽  
I. D. Jung ◽  
J. V. Rudd ◽  
H. Cheng ◽  
...  

2021 ◽  
Vol 2042 (1) ◽  
pp. 012113
Author(s):  
Michael Kim ◽  
Athanasios Tzempelikos

Abstract Continuous luminance monitoring is challenging because high-dynamic-range cameras are expensive, they need programming, and are intrusive when placed near the occupants’ field-of-view. A new semi-automated and non-intrusive framework is presented for monitoring occupant-perceived luminance using a low-cost camera sensor and Structure-from- Motion (SfM)-Multiview Stereo (MVS) photogrammetry pipeline. Using a short video and a few photos from the occupant position, the 3D space geometry is automatically reconstructed. Retrieved 3D context enables the back-projection of the camera-captured luminance distribution into 3D spaces that are in turn re-projected to occupant-FOVs. The framework was tested and validated in a testbed office. The re-projected luminance field showed with good agreement with luminance measured at the occupant position. The new method can be used for non-intrusive luminance monitoring integrated with daylighting control applications.


1993 ◽  
Vol 37 ◽  
pp. 145-151
Author(s):  
N. Loxley ◽  
S. Cockerton ◽  
B. K. Tanner

AbstractWe show that a very low noise, high dynamic range scintillation detector has major advantages over conventional detectors for characterization of pseudomorphic HEMT structures by high resolution X-ray diffraction. We show that the reduced background enables a second modulation period to be detected, enabling the thickness and composition to be determined independently. Using a conventional X-ray generator and diffractometer we demonstrate that, in a single scan taking only 10 seconds, we are able to obtain sufficiently good data to provide quality assurance.


Sign in / Sign up

Export Citation Format

Share Document