scholarly journals LPIN: A Lightweight Progressive Inpainting Network for Improving the Robustness of Remote Sensing Images Scene Classification

2021 ◽  
Vol 14 (1) ◽  
pp. 53
Author(s):  
Weining An ◽  
Xinqi Zhang ◽  
Hang Wu ◽  
Wenchang Zhang ◽  
Yaohua Du ◽  
...  

At present, the classification accuracy of high-resolution Remote Sensing Image Scene Classification (RSISC) has reached a quite high level on standard datasets. However, when coming to practical application, the intrinsic noise of satellite sensors and the disturbance of atmospheric environment often degrade real Remote Sensing (RS) images. It introduces defects to them, which affects the performance and reduces the robustness of RSISC methods. Moreover, due to the restriction of memory and power consumption, the methods also need a small number of parameters and fast computing speed to be implemented on small portable systems such as unmanned aerial vehicles. In this paper, a Lightweight Progressive Inpainting Network (LPIN) and a novel combined approach of LPIN and the existing RSISC methods are proposed to improve the robustness of RSISC tasks and satisfy the requirement of methods on portable systems. The defects in real RS images are inpainted by LPIN to provide a purified input for classification. With the combined approach, the classification accuracy on RS images with defects can be improved to the original level of those without defects. The LPIN is designed on the consideration of lightweight model. Measures are adopted to ensure a high gradient transmission efficiency while reducing the number of network parameters. Multiple loss functions are used to get reasonable and realistic inpainting results. Extensive tests of image inpainting of LPIN and classification tests with the combined approach on NWPU-RESISC45, UC Merced Land-Use and AID datasets are carried out which indicate that the LPIN achieves a state-of-the-art inpainting quality with less parameters and a faster inpainting speed. Furthermore, the combined approach keeps the comparable classification accuracy level on RS images with defects as that without defects, which will improve the robustness of high-resolution RSISC tasks.

2021 ◽  
Vol 13 (10) ◽  
pp. 1950
Author(s):  
Cuiping Shi ◽  
Xin Zhao ◽  
Liguo Wang

In recent years, with the rapid development of computer vision, increasing attention has been paid to remote sensing image scene classification. To improve the classification performance, many studies have increased the depth of convolutional neural networks (CNNs) and expanded the width of the network to extract more deep features, thereby increasing the complexity of the model. To solve this problem, in this paper, we propose a lightweight convolutional neural network based on attention-oriented multi-branch feature fusion (AMB-CNN) for remote sensing image scene classification. Firstly, we propose two convolution combination modules for feature extraction, through which the deep features of images can be fully extracted with multi convolution cooperation. Then, the weights of the feature are calculated, and the extracted deep features are sent to the attention mechanism for further feature extraction. Next, all of the extracted features are fused by multiple branches. Finally, depth separable convolution and asymmetric convolution are implemented to greatly reduce the number of parameters. The experimental results show that, compared with some state-of-the-art methods, the proposed method still has a great advantage in classification accuracy with very few parameters.


Author(s):  
Xu Tang ◽  
Weiquan Lin ◽  
Chao Liu ◽  
Xiao Han ◽  
Wenjing Wang ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1188 ◽  
Author(s):  
Jianming Zhang ◽  
Chaoquan Lu ◽  
Jin Wang ◽  
Xiao-Guang Yue ◽  
Se-Jung Lim ◽  
...  

Many remote sensing scene classification algorithms improve their classification accuracy by additional modules, which increases the parameters and computing overhead of the model at the inference stage. In this paper, we explore how to improve the classification accuracy of the model without adding modules at the inference stage. First, we propose a network training strategy of training with multi-size images. Then, we introduce more supervision information by triplet loss and design a branch for the triplet loss. In addition, dropout is introduced between the feature extractor and the classifier to avoid over-fitting. These modules only work at the training stage and will not bring about the increase in model parameters at the inference stage. We use Resnet18 as the baseline and add the three modules to the baseline. We perform experiments on three datasets: AID, NWPU-RESISC45, and OPTIMAL. Experimental results show that our model combined with the three modules is more competitive than many existing classification algorithms. In addition, ablation experiments on OPTIMAL show that dropout, triplet loss, and training with multi-size images improve the overall accuracy of the model on the test set by 0.53%, 0.38%, and 0.7%, respectively. The combination of the three modules improves the overall accuracy of the model by 1.61%. It can be seen that the three modules can improve the classification accuracy of the model without increasing model parameters at the inference stage, and training with multi-size images brings a greater gain in accuracy than the other two modules, but the combination of the three modules will be better.


2020 ◽  
Vol 12 (22) ◽  
pp. 3845
Author(s):  
Zhiyu Xu ◽  
Yi Zhou ◽  
Shixin Wang ◽  
Litao Wang ◽  
Feng Li ◽  
...  

The real-time, accurate, and refined monitoring of urban green space status information is of great significance in the construction of urban ecological environment and the improvement of urban ecological benefits. The high-resolution technology can provide abundant information of ground objects, which makes the information of urban green surface more complicated. The existing classification methods are challenging to meet the classification accuracy and automation requirements of high-resolution images. This paper proposed a deep learning classification method for urban green space based on phenological features constraints in order to make full use of the spectral and spatial information of green space provided by high-resolution remote sensing images (GaoFen-2) in different periods. The vegetation phenological features were added as auxiliary bands to the deep learning network for training and classification. We used the HRNet (High-Resolution Network) as our model and introduced the Focal Tversky Loss function to solve the sample imbalance problem. The experimental results show that the introduction of phenological features into HRNet model training can effectively improve urban green space classification accuracy by solving the problem of misclassification of evergreen and deciduous trees. The improvement rate of F1-Score of deciduous trees, evergreen trees, and grassland were 0.48%, 4.77%, and 3.93%, respectively, which proved that the combination of vegetation phenology and high-resolution remote sensing image can improve the results of deep learning urban green space classification.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Yunlong Yu ◽  
Fuxian Liu

One of the challenging problems in understanding high-resolution remote sensing images is aerial scene classification. A well-designed feature representation method and classifier can improve classification accuracy. In this paper, we construct a new two-stream deep architecture for aerial scene classification. First, we use two pretrained convolutional neural networks (CNNs) as feature extractor to learn deep features from the original aerial image and the processed aerial image through saliency detection, respectively. Second, two feature fusion strategies are adopted to fuse the two different types of deep convolutional features extracted by the original RGB stream and the saliency stream. Finally, we use the extreme learning machine (ELM) classifier for final classification with the fused features. The effectiveness of the proposed architecture is tested on four challenging datasets: UC-Merced dataset with 21 scene categories, WHU-RS dataset with 19 scene categories, AID dataset with 30 scene categories, and NWPU-RESISC45 dataset with 45 challenging scene categories. The experimental results demonstrate that our architecture gets a significant classification accuracy improvement over all state-of-the-art references.


Sign in / Sign up

Export Citation Format

Share Document