scholarly journals Geomorphic Evolution of Radial Sand Ridges in the South Yellow Sea Observed from Satellites

2022 ◽  
Vol 14 (2) ◽  
pp. 287
Author(s):  
Yanyan Kang ◽  
Jinyan He ◽  
Bin Wang ◽  
Jun Lei ◽  
Zihe Wang ◽  
...  

The radial sand ridges consist of more than 70 sand ridges that are spread out radially on the continental shelf of the South Yellow Sea. As a unique geomorphological feature in the world, its evolution process and characteristics are crucial to marine resource management and ecological protection. Based on the multi-source remote sensing image data from 1979 to 2019, three types of geomorphic feature lines, artificial coastlines, waterlines, and sand ridge lines were extracted. Using the GIS sequence analysis method (Digital Shoreline Analysis System (DSAS), spatial overlay analysis, standard deviational ellipse method), the evolution characteristics of the shoreline, exposed tidal flats, and underwater sand ridges from land to sea were interpreted. The results demonstrate that: (1) The coastline has been advancing towards the sea with a maximum advance rate of 348.76 m/a from Wanggang estuary to Xiaoyangkou Port. (2) The exposed tidal flats have decreased by 1484 km2 including the reclaimed area of 1414 km2 and showed a trend of erosion in the north around Xiyang channel and deposition in the southeast around the Gaoni and Jiangjiasha areas. (3) The overall sand ridge lines showed a trend of gradually moving southeast (135°), and the moving distance is nearly 4 km in the past 40 years. In particular, the sand ridge of Tiaozini has moved 11 km southward, while distances of 8 km for Liangyuesha and 5 km for Lengjiasha were also observed. For the first time, this study quantified the overall migration trend of the RSRs. The imbalance of the regional tidal wave system may be one of the main factors leading to the overall southeastward shift of the radiation sandbanks.

1999 ◽  
Vol 42 (1) ◽  
pp. 97-112 ◽  
Author(s):  
Ying Wang ◽  
Dakui Zhu ◽  
Kunyuan You ◽  
Shaoming Pan ◽  
Xiaodong Zhu ◽  
...  

2020 ◽  
Vol 7 ◽  
Author(s):  
Qian Zhang ◽  
Min Su ◽  
Peng Yao ◽  
Yongping Chen ◽  
Marcel J. F. Stive ◽  
...  

Tidal currents belong to the main driving forces shaping the bathymetry of marginal seas. A globally unique radial sand ridge field exists in the South Yellow Sea off the central Jiangsu coast, China. Its formation is related to the distinctive “radial tidal current” pattern at that location. A generally accepted hypothesis is that the “radial tidal current” is a consequence of the interference between the northern amphidromic tidal wave system and the southern incoming tidal wave. In this study, a schematized numerical tidal model was designed to investigate the tidal current system and the factors of influence in the South Yellow Sea. Concepts of the tidal current amphidromic point (CAP) and the tidal current inclination angle are utilized to analyze the inherent structure of the tidal current system. By conducting a series of numerical experiments, it is found that the Poincaré modes are necessary for the existence of “radial tidal current,” and the e-folding decay length should be smaller than the basin length. In the Yellow Sea, cross-basin phase differences due to lateral depth differences as well as open boundary conditions favor the emergence of the “radial tidal current.” Further analyses indicate that the CAP system (i.e., the co-inclination lines, the CAPs, and the tidal ellipticity) deepens the understanding on the dynamic structure of a tidal current system, and therefore, it deserves more attention in future studies.


Sign in / Sign up

Export Citation Format

Share Document