scholarly journals Estimation of Diurnal Cycle of Land Surface Temperature at High Temporal and Spatial Resolution from Clear-Sky MODIS Data

2014 ◽  
Vol 6 (4) ◽  
pp. 3247-3262 ◽  
Author(s):  
Si-Bo Duan ◽  
Zhao-Liang Li ◽  
Bo-Hui Tang ◽  
Hua Wu ◽  
Ronglin Tang ◽  
...  
IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 114541-114553
Author(s):  
Zefeng Xing ◽  
Yanru Yu ◽  
Si-Bo Duan ◽  
Zhao-Liang Li ◽  
Maofang Gao ◽  
...  

2017 ◽  
Vol 105 ◽  
pp. 10-20 ◽  
Author(s):  
Liang Sun ◽  
Zhongxin Chen ◽  
Feng Gao ◽  
Martha Anderson ◽  
Lisheng Song ◽  
...  

2018 ◽  
Vol 10 (9) ◽  
pp. 1407 ◽  
Author(s):  
Yoann Malbéteau ◽  
Stephen Parkes ◽  
Bruno Aragon ◽  
Jorge Rosas ◽  
Matthew McCabe

Characterizing the land surface temperature (LST) and its diurnal cycle is important in understanding a range of surface properties, including soil moisture status, evaporative response, vegetation stress and ground heat flux. While remote-sensing platforms present a number of options to retrieve this variable, there are inevitable compromises between the resolvable spatial and temporal resolution. For instance, the spatial resolution of geostationary satellites, which can provide sub-hourly LST, is often too coarse (3 km) for many applications. On the other hand, higher-resolution polar orbiting satellites are generally infrequent in time, with return intervals on the order of weeks, limiting their capacity to capture surface dynamics. With recent developments in the application of unmanned aerial vehicles (UAVs), there is now the opportunity to collect LST measurements on demand and at ultra-high spatial resolution. Here, we detail the collection and analysis of a UAV-based LST dataset, with the purpose of examining the diurnal surface temperature response: something that has not been possible from traditional satellite platforms at these scales. Two separate campaigns were conducted over a bare desert surface in combination with either Rhodes grass or a recently harvested maize field. In both cases, thermal imagery was collected between 0800 and 1700 local solar time. The UAV-based diurnal cycle was consistent with ground-based measurements, with a mean correlation coefficient and root mean square error (RMSE) of 0.99 and 0.68 °C, respectively. LST retrieved over the grass surface presented the best results, with an RMSE of 0.45 °C compared to 0.67 °C for the single desert site and 1.28 °C for the recently harvested maize surface. Even considering the orders of magnitude difference in scale, an exploratory analysis comparing retrievals of the UAV-based diurnal cycle with METEOSAT geostationary data yielded pleasing results (R = 0.98; RMSE = 1.23 °C). Overall, our analysis revealed a diurnal range over the desert and maize surfaces of ~20 °C and ~17 °C respectively, while the grass showed a reduced amplitude of ~12 °C. Considerable heterogeneity was observed over the grass surface at the peak of the diurnal cycle, which was likely indicative of the varying crop water status. To our knowledge, this study presents the first spatially varying analysis of the diurnal LST captured at ultra-high resolution, from any remote platform. Our findings highlight the considerable potential to utilize UAV-based retrievals to enhance investigations across multi-disciplinary studies in agriculture, hydrology and land-atmosphere investigations.


2021 ◽  
Vol 13 (11) ◽  
pp. 2211
Author(s):  
Shuo Xu ◽  
Jie Cheng ◽  
Quan Zhang

Land surface temperature (LST) is an important parameter for mirroring the water–heat exchange and balance on the Earth’s surface. Passive microwave (PMW) LST can make up for the lack of thermal infrared (TIR) LST caused by cloud contamination, but its resolution is relatively low. In this study, we developed a TIR and PWM LST fusion method on based the random forest (RF) machine learning algorithm to obtain the all-weather LST with high spatial resolution. Since LST is closely related to land cover (LC) types, terrain, vegetation conditions, moisture condition, and solar radiation, these variables were selected as candidate auxiliary variables to establish the best model to obtain the fusion results of mainland China during 2010. In general, the fusion LST had higher spatial integrity than the MODIS LST and higher accuracy than downscaled AMSR-E LST. Additionally, the magnitude of LST data in the fusion results was consistent with the general spatiotemporal variations of LST. Compared with in situ observations, the RMSE of clear-sky fused LST and cloudy-sky fused LST were 2.12–4.50 K and 3.45–4.89 K, respectively. Combining the RF method and the DINEOF method, a complete all-weather LST with a spatial resolution of 0.01° can be obtained.


2019 ◽  
Vol 11 (2) ◽  
pp. 138 ◽  
Author(s):  
Chaolei Zheng ◽  
Li Jia ◽  
Guangcheng Hu ◽  
Jing Lu

Thailand is characterized by typical tropical monsoon climate, and is suffering serious water related problems, including seasonal drought and flooding. These issues are highly related to the hydrological processes, e.g., precipitation and evapotranspiration (ET), which are helpful to understand and cope with these problems. It is critical to study the spatiotemporal pattern of ET in Thailand to support the local water resource management. In the current study, daily ET was estimated over Thailand by ETMonitor, a process-based model, with mainly satellite earth observation datasets as input. One major advantage of the ETMonitor algorithm is that it introduces the impact of soil moisture on ET by assimilating the surface soil moisture from microwave remote sensing, and it reduces the dependence on land surface temperature, as the thermal remote sensing is highly sensitive to cloud, which limits the ability to achieve spatial and temporal continuity of daily ET. The ETMonitor algorithm was further improved in current study to take advantage of thermal remote sensing. In the improved scheme, the evaporation fraction was first obtained by land surface temperature—vegetation index triangle method, which was used to estimate ET in the clear days. The soil moisture stress index (SMSI) was defined to express the constrain of soil moisture on ET, and clear sky SMSI was retrieved according to the estimated clear sky ET. Clear sky SMSI was then interpolated to cloudy days to obtain the SMSI for all sky conditions. Finally, time-series ET at daily resolution was achieved using the interpolated spatio-temporal continuous SMSI. Good agreements were found between the estimated daily ET and flux tower observations with root mean square error ranging between 1.08 and 1.58 mm d−1, which showed better accuracy than the ET product from MODerate resolution Imaging Spectroradiometer (MODIS), especially for the forest sites. Chi and Mun river basins, located in Northeast Thailand, were selected to analyze the spatial pattern of ET. The results indicate that the ET had large fluctuation in seasonal variation, which is predominantly impacted by the monsoon climate.


2019 ◽  
Vol 11 (16) ◽  
pp. 1947 ◽  
Author(s):  
Lei Ji ◽  
Gabriel B. Senay ◽  
Naga M. Velpuri ◽  
Stefanie Kagone

The Operational Simplified Surface Energy Balance (SSEBop) model uses the principle of satellite psychrometry to produce spatially explicit actual evapotranspiration (ETa) with remotely sensed and weather data. The temperature difference (dT) in the model is a predefined parameter quantifying the difference between surface temperature at bare soil and air temperature at canopy level. Because dT is derived from the average-sky net radiation based primarily on climate data, validation of the dT estimation is critical for assuring a high-quality ETa product. We used the Moderate Resolution Imaging Spectroradiometer (MODIS) data to evaluate the SSEBop dT estimation for the conterminous United States. MODIS data (2008–2017) were processed to compute the 10-year average land surface temperature (LST) and normalized difference vegetation index (NDVI) at 1 km resolution and 8-day interval. The observed dT (dTo) was computed from the LST difference between hot (NDVI < 0.25) and cold (NDVI > 0.7) pixels within each 2° × 2° sampling block. There were enough hot and cold pixels within each block to create dTo timeseries in the West Coast and South-Central regions. The comparison of dTo and modeled dT (dTm) showed high agreement, with a bias of 0.8 K and a correlation coefficient of 0.88 on average. This study concludes that the dTm estimation from the SSEBop model is reliable, which further assures the accuracy of the ETa estimation.


Sign in / Sign up

Export Citation Format

Share Document