scholarly journals Water Bodies’ Mapping from Sentinel-2 Imagery with Modified Normalized Difference Water Index at 10-m Spatial Resolution Produced by Sharpening the SWIR Band

2016 ◽  
Vol 8 (4) ◽  
pp. 354 ◽  
Author(s):  
Yun Du ◽  
Yihang Zhang ◽  
Feng Ling ◽  
Qunming Wang ◽  
Wenbo Li ◽  
...  
Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 945
Author(s):  
Hao Jiang ◽  
Mo Wang ◽  
Hongda Hu ◽  
Jianhui Xu

Accurate waterbody mapping can support water-related environment monitoring and resource management. The Sentinel series satellites provide high-quality Synthetic Aperture Radar (SAR) and optical observations that are commonly used in waterbody mapping. However, owing to the 10-m spatial resolution of Sentinel data, previous studies mostly focused on the mapping of large waterbodies. In this work, we evaluated the performance of small waterbody mapping over urban and mountainous regions with two datasets, the average annual VH backscatter coefficients (VHavg), derived from the Sentinel-1A series, and the Modified Normalized Difference Water Index (MNDWI), derived from cloud-free Sentinel-2. A proven framework of waterbody mapping based on watershed segmentation and noise reduction was employed to assess the performance of the two datasets in waterbody identification. The validation was performed by comparing their results with 1-m spatial resolution reference waterbody data. Assessment metrics, including Precision, Recall, and F-measure, were employed. Results showed that: (1) the MNDWI outperformed the VHavg by 9 percentage points of the F-measure; (2) there was more room for results of VHavg to improve the accuracy through a combination with noise reduction; and (3) the potential smallest identifiable waterbody area (recall rate larger than 0.8) was larger than 104 m2.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1486
Author(s):  
Chris Cavalaris ◽  
Sofia Megoudi ◽  
Maria Maxouri ◽  
Konstantinos Anatolitis ◽  
Marios Sifakis ◽  
...  

In this study, a modelling approach for the estimation/prediction of wheat yield based on Sentinel-2 data is presented. Model development was accomplished through a two-step process: firstly, the capacity of Sentinel-2 vegetation indices (VIs) to follow plant ecophysiological parameters was established through measurements in a pilot field and secondly, the results of the first step were extended/evaluated in 31 fields, during two growing periods, to increase the applicability range and robustness of the models. Modelling results were examined against yield data collected by a combine harvester equipped with a yield-monitoring system. Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) were examined as plant signals and combined with Normalized Difference Water Index (NDWI) and/or Normalized Multiband Drought Index (NMDI) during the growth period or before sowing, as water and soil signals, respectively. The best performing model involved the EVI integral for the 20 April–31 May period as a plant signal and NMDI on 29 April and before sowing as water and soil signals, respectively (R2 = 0.629, RMSE = 538). However, model versions with a single date and maximum seasonal VIs values as a plant signal, performed almost equally well. Since the maximum seasonal VIs values occurred during the last ten days of April, these model versions are suitable for yield prediction.


Author(s):  
Suwarsono Suwarsono ◽  
Fajar Yulianto ◽  
Hana Listi Fitriana ◽  
Udhi Catur Nugroho ◽  
Kusumaning Ayu Dyah Sukowati ◽  
...  

This paper describes the detection of the surface water area in Cirata dam,  upstream Citarum, using a water index derived from Sentinel-2. MSI Level 1C (MSIL1C) data from 16 November 2018 were extracted into a water index such as the NDWI (Normalized Difference Water Index) model of Gao (1996), McFeeters (1996), Roger and Kearney (2004), and Xu (2006). Water index were analyzed based on the presence of several objects (water, vegetation, soil, and built-up). The research resulted in the ability of each water index to separate water and non-water objects. The results conclude that the NDWI of McFeeters (1996) derived from Sentinel-2 MSI showed the best results in detecting the surface water area of the reservoir.


2020 ◽  
Vol 20 (4) ◽  
pp. 458-475
Author(s):  
Sabrina Brandão Cardoso ◽  
Caroline Favoreto da Cunha ◽  
Bruno Zanon Engelbrecht ◽  
Hung Kiang Chang

No presente trabalho foram utilizadas imagens multiespectrais do satélite Sentinel-2 da Bacia Hidrográfica do Rio Cachoeira (BHRC), localizada no sul do estado da Bahia. O objetivo deste trabalho foi detectar, delimitar e quantificar a área ocupada por reservatórios de água na BHRC. Para tanto foram calculados os índices MNDWI (Modified Normalized Difference Water Index) e NDWI (Normalized Difference Water Index). A capacidade de detecção de pequenos corpos d’água pelos métodos empregados mostrou-se satisfatória, apresentando uma correspondência de até 78% entre os métodos, com superiores resultados para índice MNDWI frente ao NDWI. A partir desses índices foram observadas variações sazonais e espaciais quanto à distribuição de reservatórios na BHRC. A porção sudoeste da bacia apresentou maior concentração de pequenos reservatórios no período chuvoso. No contexto geral da bacia hidrográfica, os reservatórios de água ocupam até 0,13% da área da bacia, enquanto que em determinadas áreas do sudoeste da BHRC esse valor atinge até 0,86%.


2021 ◽  
Vol 32 (3) ◽  
pp. 1
Author(s):  
Aqeel Ghazi Mutar ◽  
Asraa Khtan ◽  
Loay E. George

Torrential rains cause many losses in city infrastructure, crops, and deaths in several regions of the world including Iraq as in the case that we will discuss in this work, on January 28 and 29, 2019. Torrential rain caused the flow of torrents in several areas of Iraq and the neighboring areas. This research work aims to identify the synoptic characteristics of torrential rains and the causes of this case. This will be done by analyzing and interpreting the weather maps at different pressure levels with focusing on the troughs and fronts locations, relative vorticity, polar jet stream effect as well as the moisture flux. The Geographic Information System (GIS) was used to analyze the satellite images in order to calculate the Normalized Difference Water Index (NDWI) to confirm the heavy rain case. The weather maps were obtained from the Modern-Era Retrospective analysis for Research and Applications Version 2 (MERRA-2).  As for the satellite images we used the satellite imagery from Sentinel-2 and EMUTSAT.


2018 ◽  
Vol 10 (10) ◽  
pp. 1643 ◽  
Author(s):  
Zifeng Wang ◽  
Junguo Liu ◽  
Jinbao Li ◽  
David Zhang

Accurate water mapping depends largely on the water index. However, most previously widely-adopted water index methods are developed from 30-m resolution Landsat imagery, with low-albedo commission error (e.g., shadow misclassified as water) and threshold instability being identified as the primary issues. Besides, since the shortwave-infrared (SWIR) spectral band (band 11) on Sentinel-2 is 20 m spatial resolution, current SWIR-included water index methods usually produce water maps at 20 m resolution instead of the highest 10 m resolution of Sentinel-2 bands, which limits the ability of Sentinel-2 to detect surface water at finer scales. This study aims to develop a water index from Sentinel-2 that improves native resolution and accuracy of water mapping at the same time. Support Vector Machine (SVM) is used to exploit the 10-m spectral bands among Sentinel-2 bands of three resolutions (10-m; 20-m; 60-m). The new Multi-Spectral Water Index (MuWI), consisting of the complete version and the revised version (MuWI-C and MuWI-R), is designed as the combination of normalized differences for threshold stability. The proposed method is assessed on coincident Sentinel-2 and sub-meter images covering a variety of water types. When compared to previous water indexes, results show that both versions of MuWI enable to produce native 10-m resolution water maps with higher classification accuracies (p-value < 0.01). Commission and omission errors are also significantly reduced particularly in terms of shadow and sunglint. Consistent accuracy over complex water mapping scenarios is obtained by MuWI due to high threshold stability. Overall, the proposed MuWI method is applicable to accurate water mapping with improved spatial resolution and accuracy, which possibly facilitates water mapping and its related studies and applications on growing Sentinel-2 images.


2020 ◽  
Vol 20 (4) ◽  
pp. 458-475
Author(s):  
Sabrina Brandão Cardoso ◽  
Caroline Favoreto da Cunha ◽  
Bruno Zanon Engelbrecht ◽  
Hung Kiang Chang

No presente trabalho foram utilizadas imagens multiespectrais do satélite Sentinel-2 da Bacia Hidrográfica do Rio Cachoeira (BHRC), localizada no sul do estado da Bahia. O objetivo deste trabalho foi detectar, delimitar e quantificar a área ocupada por reservatórios de água na BHRC. Para tanto foram calculados os índices MNDWI (Modified Normalized Difference Water Index) e NDWI (Normalized Difference Water Index). A capacidade de detecção de pequenos corpos d’água pelos métodos empregados mostrou-se satisfatória, apresentando uma correspondência de até 78% entre os métodos, com superiores resultados para índice MNDWI frente ao NDWI. A partir desses índices foram observadas variações sazonais e espaciais quanto à distribuição de reservatórios na BHRC. A porção sudoeste da bacia apresentou maior concentração de pequenos reservatórios no período chuvoso. No contexto geral da bacia hidrográfica, os reservatórios de água ocupam até 0,13% da área da bacia, enquanto que em determinadas áreas do sudoeste da BHRC esse valor atinge até 0,86%.


Author(s):  
B. Chandrababu Naik ◽  
B. Anuradha

Extraction of water bodies from satellite imagery has been broadly explored in the current decade. So many techniques were involved in detecting of the surface water bodies from satellite data. To detect and extracting of surface water body changes in Nagarjuna Sagar Reservoir, Andhra Pradesh from the period 1989 to 2017, were calculated using Landsat-5 TM, and Landsat-8 OLI data. Unsupervised classification and spectral water indexing methods, including the Normalized Difference Vegetation Index (NDVI), Normalized Difference Moisture Index (NDMI), Normalized Difference Water Index (NDWI), and Modified Normalized Difference Water Index (MNDWI), were used to detect and extraction of the surface water body from satellite data. Instead of all index methods, the MNDWI was performed better results. The Reservoir water area was extracted using spectral water indexing methods (NDVI, NDWI, MNDWI, and NDMI) in 1989, 1997, 2007, and 2017. The shoreline shrunk in the twenty-eight-year duration of images. The Reservoir Nagarjuna Sagar lost nearly around one-fourth of its surface water area compared to 1989. However, the Reservoir has a critical position in recent years due to changes in surface water and getting higher mud and sand. Maximum water surface area of the Reservoir will lose if such decreasing tendency follows continuously.


Sign in / Sign up

Export Citation Format

Share Document